Curing Behavior and Thermomechanical Performance of Bioepoxy Resin Synthesized from Vanillyl Alcohol: Effects of the Curing Agent

Presenter Information

Himanshubhai Patel

Category

Topical Literature Review

Department

Material Science

Student Status

Graduate

Research Advisor

Dr. Ram Gupta

Document Type

Event

Location

Student Center Ballroom

Start Date

10-4-2025 2:00 PM

End Date

10-4-2025 4:00 PM

Description

In order to reduce the dependency of resin synthesis on petroleum resources, vanillyl alcohol which is a renewable material that can be produced from lignin has been used to synthesize bioepoxy resin. Although it has been widely reported that the curing reaction and properties of the cured epoxies can be greatly affected by the molecular structure of the curing agents, the exact influence remains unknown for bioepoxies. In this study, four aliphatic amines with different molecular structures and amine functionalities, namely triethylenetetramine (TETA), Tris(2-aminoethyl)amine (TREN), diethylenetriamine (DETA), and ethylenediamine (EDA), were used to cure the synthesized vanillyl alcohol-based bioepoxy resin (VE). The curing reaction of VE and the physicochemical properties, especially the thermomechanical performance of the cured bioepoxies with different amine functionalities, were systematically investigated and compared using different characterization methods, such as DSC, ATR-FTIR, TGA, DMA, and tensile testing, etc. Despite a higher curing temperature needed in the VE-TETA resin system, the cured VE-TETA epoxy showed a better chemical resistance, particularly acidic resistance, as well as a lower swelling ratio than the others. The higher thermal decomposition temperature, storage modulus, and relaxation temperature of VE-TETA epoxy indicated its superior thermal stability and thermomechanical properties. Moreover, the tensile strength of VE cured by TETA was 1.4-2.6 times higher than those of other curing systems. In conclusion, TETA was shown to be the optimum epoxy curing agent for vanillyl alcohol-based bioepoxy resin.

This document is currently not available here.

Share

COinS
 
Apr 10th, 2:00 PM Apr 10th, 4:00 PM

Curing Behavior and Thermomechanical Performance of Bioepoxy Resin Synthesized from Vanillyl Alcohol: Effects of the Curing Agent

Student Center Ballroom

In order to reduce the dependency of resin synthesis on petroleum resources, vanillyl alcohol which is a renewable material that can be produced from lignin has been used to synthesize bioepoxy resin. Although it has been widely reported that the curing reaction and properties of the cured epoxies can be greatly affected by the molecular structure of the curing agents, the exact influence remains unknown for bioepoxies. In this study, four aliphatic amines with different molecular structures and amine functionalities, namely triethylenetetramine (TETA), Tris(2-aminoethyl)amine (TREN), diethylenetriamine (DETA), and ethylenediamine (EDA), were used to cure the synthesized vanillyl alcohol-based bioepoxy resin (VE). The curing reaction of VE and the physicochemical properties, especially the thermomechanical performance of the cured bioepoxies with different amine functionalities, were systematically investigated and compared using different characterization methods, such as DSC, ATR-FTIR, TGA, DMA, and tensile testing, etc. Despite a higher curing temperature needed in the VE-TETA resin system, the cured VE-TETA epoxy showed a better chemical resistance, particularly acidic resistance, as well as a lower swelling ratio than the others. The higher thermal decomposition temperature, storage modulus, and relaxation temperature of VE-TETA epoxy indicated its superior thermal stability and thermomechanical properties. Moreover, the tensile strength of VE cured by TETA was 1.4-2.6 times higher than those of other curing systems. In conclusion, TETA was shown to be the optimum epoxy curing agent for vanillyl alcohol-based bioepoxy resin.