Date of Award
Spring 5-15-2024
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Chemistry
First Advisor
Dr. Ram K. Gupta
Second Advisor
Dr. Khamis Siam
Third Advisor
Dr. Timothy Dawsey
Fourth Advisor
Dr. Anuradha Ghosh,
Keywords
Sustainable materials, Aliphatic amines, Solventless synthesis, Isocyanate and catalyst free synthesis, Mechanical properties, Structure-properties
Abstract
Synthesizing polymeric materials that are both sustainable and practical has become a priority. Polyurethanes (PU) are becoming more popular because of their countless applications and exclusive properties in many sectors. While considering the current issue of environmental problems and the excessive use of petroleum products, non-isocyanate polyurethanes (NIPU) are favored due to their sustainability and low toxicity compared to conventional PU. In this work, flexible NIPU films were made using a green and facile method. For that, soybean oil (SBO) was used as the starting material and converted into epoxide soybean oil (ESBO) followed by its chemical conversion into carbonated soybean oil (CSBO) using carbon dioxide (CO2) gas. Following that, the CSBO reacted with three different aliphatic amines, namely 1,2-ethylenediamine (EDA), 1,4-butylenediamine (BDA), and 1,6-hexamethylenediamine (HDA) in a solventless and catalyst-free system. The films were cast and cured at 85 ℃ at different curing times. The effects of the aliphatic diamines and curing times on the NIPU films were evaluated. The individual materials were confirmed with FT-IR, 1H nuclear magnetic resonance, and gel permeation chromatography. To analyze the thermal and mechanical properties, thermogravimetric analysis, dynamic mechanical analysis, and differential scanning calorimetry were performed. Furthermore, mechanical tests such as hardness and tensile strength were also performed along with the degree of swelling, gel content, and contact angle using several solvents. This study elucidated the structure-property relationship based on the effect of curing time and aliphatic chain size of diamines in the properties of a NIPU film. The satisfactory thermal and mechanical properties accompanied by a green and facile approach displayed the potential scalability of the NIPU films.
Recommended Citation
Patel, Pratik, "STUDY OF SOYBEAN OIL-BASED NON-ISOCYANATE POLYURETHANE FILMS VIA A SOLVENT AND CATALYST-FREE APPROACH" (2024). Electronic Theses & Dissertations. 521.
https://digitalcommons.pittstate.edu/etd/521