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OXIDE@POLYANILINE AS BIFUNCTIONAL ELECTRODE MATERIALS FOR 

ENERGY CONVERSION AND STORAGE 

 

 

An Abstract of the Thesis by 

Jonghyun Choi 

 

 

The world’s increasing consumption of energy has led researchers to focus on 

research and development for high performance-energy devices. Development of 

materials used in energy devices is currently focused on improving the performance 

and stability of devices. Composite materials are well known as an effective way to 

improve the performance of an energy device. A composite is a combination of two or 

more materials with different properties, and such combinations can be of great help in 

advancing the performance of a composite material by adding the advantages or 

compensating for the disadvantages of each material. 

 In this study, ternary composite materials were synthesized by combining binary 

transition metal oxide (nickel cobalt oxide, nickel manganese oxide, manganese cobalt 

oxide) with reduced graphene oxide (rGO) and polyaniline (PANI). All ternary 

composite materials were prepared via successive employment of hydrothermal 

technique and polymerization of aniline. All materials were utilized as an electrode 

material for electrocatalysts and supercapacitor devices.  

Ternary composite materials showed high activity towards oxygen evolution 

reaction, requiring low overpotential of 342, 340, 382 mV, and high electrocatalytic 

properties for hydrogen evolution reaction, achieving low overpotential of 134, 95, 117 

mV for rGO/nickel cobalt oxide/ PANI, rGO/nickel manganese oxide/ PANI, and 

rGO/manganese cobalt oxide/PANI, respectively to reach a current density of 10 
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mA/cm2. Also, ternary composite materials showed a specific capacitance ranging from 

145-285 F/g at a scan rate of 2 mV/s, along with high capacitance retention and 

coulombic efficiency up to 7,000 charge/discharge cycles.  

Consequently, the results suggest that a ternary composite material has the potential 

to be efficiently used with a bifunctional purpose as an energy conversion and storage 

application material. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 

1.1 Need for energy  

The global energy crisis and related environmental issues significantly affect our 

ecosystems, public human health, and economy. Without proper action, it will continue 

to negatively affect certain aspects of our everyday lives (e.g., increase of oil prices, 

health complications due to environmental pollution). In order to tackle these 

challenging issues, efficient energy devices are required. Electrocatalyst for water 

splitting and supercapacitor devices are known as advanced devices for energy 

conversion and storage, respectively.  

 

1.2 Introduction of electrocatalyst for water splitting  

Hydrogen is an important energy source. It is mainly utilized to produce ammonia 

for fertilizer and to refine petroleum [1]. In addition, a large amount of hydrogen is 

employed for fuel cell electric vehicles, which have recently attracted much attention 

as alternatives to internal combustion vehicles that pollute our environment. However, 

free hydrogen is present in only trace amounts on Earth; thus, hydrogen must be refined 

from other sources. Three methods are mainly used: (1) steam methane reforming, (2) 
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coal gasification, and (3) water electrolysis. Hydrogen can be achieved by the following 

reaction [1]: 

(1) Steam methane reforming                               𝐶𝐻4  +  2𝐻2𝑂 →  4𝐻2 + 𝐶𝑂2                                                                                       

(2) Coal gasification                                                 𝐶 +  2𝐻2𝑂 →  2𝐻2 + 𝐶𝑂2                                                                                           

(3) Water electrolysis                                                      2𝐻2𝑂 →  2𝐻2 + 𝑂2                                                                                

Steam methane reforming and coal gasification methods account for more than 95% 

of hydrogen production, while water electrolysis accounts for only for 4%. Steam 

methane reforming and coal gasification seem efficient for clean energy production. 

However, both processes simultaneously contribute to environmental pollution due to 

the emission of CO2. Therefore, many studies on water electrolysis methods that do not 

generate CO2 are being conducted.  

At the same time, the water electrolysis method is also effective for oxygen 

generation. Oxygen gas, in particular, is in higher demand and more necessary during 

this COVID-dominated era. Many COVID patients experience low oxygen levels, 

which can continue to drop if left unaddressed. The oxygen generated by water 

electrolysis can be stored for use in hospitals. Also, oxygen production from water is 

essential for the storage mechanism of the metal air battery, which is currently called 

the next generation battery. A commercial Li-ion battery shows an energy density of 

200-250 Wh/kg, whereas a Li-air battery can deliver an energy density of 5,200 Wh/kg, 

which is about 20 times more [2].  

For this reason, the development of a method capable of producing oxygen from 

water seems essential. Figure 1.1 shows the electrolyzer, which helps to improve the 

efficiency of the water splitting process. An electrolyzer consists of a cathode, an anode, 
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and aqueous electrolyte. Hydrogen evolution reaction (HER) and oxygen evolution 

reaction (OER) takes place on the cathode and anode, respectively. The water splitting 

process is highly dependent on pH; thus different reactions are shown on the following 

equations [1]: 

Acidic solution 

(1) Cathode                                                2𝐻+  +  2𝑒−  →  𝐻2                                                                                     

(2) Anode                                              𝐻2𝑂 →  2𝐻+ + 2𝑒− +
1

2
𝑂2                  

In neutral and alkaline solutions 

(1) Cathode                                          2𝐻2𝑂 +  2𝑒−  →  𝐻2 + 2𝑂𝐻−
                                                                                     

(2) Anode                                              2𝑂𝐻−  → 𝐻2𝑂 + 2𝑒− +
1

2
𝑂2                  

Total reaction      𝐻2𝑂 →  𝐻2      +
1

2
𝑂2                  

It is worth noting that transfer of four electrons is required to produce oxygen gas 

and OER involves multiple step reactions, which results in sluggish OER kinetics [3]. 

Based on thermodynamic consideration, the water splitting voltage is 1.23 V at 25 °C 

regardless of media.  However, in reality, extra voltage, called “overpotential” should 

be applied for water splitting. Therefore, efficient electrocatalysts are needed to reduce 

the overpotential for the breakdown of water.  
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Figure 1.1: Schematic illustration of the electrolyzer. 

 

Noble materials are considered the most effective materials for electrocatalysts. For 

example, platinum (Pt) displays excellent activity towards HER, while iridium (Ir) and 

ruthenium (Ru) show highly efficient performances towards OER [4]. However, since 

the above-mentioned materials are rare and expensive, various efforts are being made 

to discover or develop materials that are as abundant and inexpensive as possible while 

providing performance as good as noble materials. An example of the typical material 

is a transition metal oxide because transition metal oxide-based electrode materials are 

earth-abundant and show high electrochemical activity and stable performance [5].  

Although the performance of transition metal oxide is good, it still needs further 

development compared to noble materials. Therefore, there are many efforts to improve 

the electrocatalytic properties and stability of transition metal oxide by using various 

strategies, such as material dimension reduction, composite formation, doping and 

functionalization, and morphology control, etc. For example, the He group synthesized 

mesoporous NiO/MnO2 using inverse micelle templated UCT (University of 
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Connecticut) methods [6]. The material was utilized as an electrocatalyst material for 

oxygen evolution reaction and showed a low overpotential of 390 mV at 10 mA/cm2. 

However, in order to improve the electrocatalytic activity of the material, the group 

coated PANI onto the surface of the NiO/MnO. It showed an improved conductivity of 

NiO/MnO2@PANI material, which resulted in a lower overpotential of 345 mV. 

 

1.3 Introduction of supercapacitor  

A growing interest in electric vehicles (EVs) is driving demand for lithium-ion 

batteries. Because the specific energy of the lithium-ion battery is high, it is also widely 

used in various applications such as laptops and mobile phones. The layered LiMO2 

(M=Co, Ni, Mn) materials and graphite are most widely used as the cathode and anode 

materials for rechargeable Li-ion batteries [7]. A charge can be stored when the guest 

ion (Li ion) is inserted between each layer of the host materials. However, the ion 

diffusion within the bulk of crystalline materials restricts the charge/discharge rate of 

the battery, which results in poor power density [8]. For this reason, EVs using batteries 

have a big disadvantage, which is that the charging rate is too slow.  

Unlike Li-ion batteries, supercapacitors are a promising energy storage device with 

fast charging and long cycle life [9]. This is because the charge storage mechanism of 

a supercapacitor is not diffusion of electrolyte in a layer structure material like a battery, 

but rather is a surface reaction of the electrode material. The energy storage capability 

of supercapacitor devices is higher than conventional capacitors, and their power 

delivery capability is higher than secondary batteries [10].  

There are three main types of supercapacitors: (1) electric double-layer capacitors 
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(EDLCs), (2) pseudocapacitors, and (3) hybrid supercapacitors. These devices can be 

classified by the energy storage mechanism. First, EDLCs store the charge based on the 

adsorption of electrolyte on the surface of the material. Figure 1.2 displays the 

schematic of electric double-layer structure [11].  

 

Figure 1.2: Electric double layer schematic of (a) Helmholtz model, (b) Gouy-

Chapman model, and (c) Gouy-Chapman-Stern model. “Reproduced with permission 

from [11]. Copyright (2011) American Chemistry Society”. 

 

The electric double layer structure was first considered by Helmholtz. He suggested 

that electrical charge can be accumulated as solvated ions lined up along the surface of 

the electrode as shown in Figure 1.2 (a).  However, given the disordering effect of 

solvated ions, many ions would diffuse towards electrolyte [12]. Thus, Figure 1.2 (b) 

exhibited the concept of a diffusion layer introduced by Gouy and Chapman. 

Subsequently, Stern proposed the Gouy-Chapman-Stern model by combining the 

concepts of Helmholtz and Gouy-Chapman model, which became the most well-known 
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concept, the EDLC. Carbon-based materials are excellent candidates as the source of 

EDLCs due to their various properties, such as large surface area, high conductivity, 

and abundance. Consequently, several carbon materials (i.e., carbon nanotubes, 

activated carbons, and graphene) are widely investigated as the active materials for 

EDLCs [13].  

Second, a pseudocapacitor predominately stores the energy via surface faradic 

redox reaction. The prefix of “pseudo” indicates the meaning of “false” or “fake”. As 

the prefix implies, a pseudocapacitor exhibits a different behavior from the 

conventional capacitor [14]. The characteristic of the device represents some point 

between EDLC and battery. The occurrence of faradic reaction deviates from the 

capacitor and enables pseudocapacitor to provide higher specific energy than EDLCs. 

The most commonly used materials for pseudocapacitors are transition metal oxide and 

conducting polymers, including ruthenium oxide (RuO2), manganese dioxide (MnO2), 

nickel oxide (NiO), cobalt oxide (Co3O4), polyaniline (PANI), polypyrrole (PPy), and 

poly (3,4-ethylenedioxythiophene) (PEDOT) [15].    

Finally, hybrid supercapacitors are devices that combine the advantages of an 

EDLC and a pseudocapacitor into one device. Two types of hybrid supercapacitors are 

extensively studied: asymmetric hybrids and composite hybrids [16]. Asymmetric 

hybrids configure an EDLC type electrode (carbon-based materials) and 

pseudocapacitor type electrode (transition metal oxide or conducting polymer) as anode 

and cathode electrode, respectively. Figure 1.3 (a) shows a hybrid supercapacitor 

consisting of 3D graphene hydrogel and MnO2@Ni foam as negative and positive 

electrodes, respectively [17]. The device showed stable operation in a wide potential 

window ranging from 0-2 V, a high maximum energy density of 23.2 Wh/kg and power 
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density of higher than 10 kW/kg, and stable 83.4% capacitance retention up to 5,000 

cycles.  

Unlike asymmetric hybrids, composite hybrids incorporate pseudocapacitor-based 

materials and EDLC-based materials into a single material. The combination of EDLC 

materials, with large surface area and high conductivity, and pseudocapacitor materials, 

with high specific capacitance derived from faradic reactions, can ensure improved 

energy storage properties. For example, Figure 1.3 (b) shows a MoS2/PPy/rGO 

composite [18]. By integrating MoS2 materials with PPy and rGO, the conductivity of 

the MoS2 was improved and high specific capacitance of 1,942 F/g was achieved at the 

current density of 1 A/g.      

 

Figure 1.3: Hybrid supercapacitor: (a) asymmetric supercapacitor consisting of 3D 

graphene hydrogel and MnO2@Ni electrodes. “Reproduced with permission from 

[17]. Copyright (2012) American Chemistry Society” and (b) rGO/MoS2/PPy 

composite electrode materials. “Reproduced with permission from [18]. Copyright 

(2021) American Chemistry Society”. 
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1.4 The objective of the thesis 

Transition metal oxide-based materials are widely utilized as bifunctional materials 

in energy conversion and storage devices due to their rich active sites and easily tunable 

properties. However, the performance of transition metal oxides is still low compared 

to state-of-the-art materials. Therefore, the purpose of this study was to elevate the 

performance and stability of transition metal oxide for energy conversion and storage. 

First, for developing of the material, two different transition metal oxides were 

combined to produce a binary transition metal oxide (BTMO). Then, in order to 

improve the conductivity of the material, rGO and PANI were combined with several 

BTMOs to make a ternary composite material. For detailed analysis of the ternary 

composite materials, various structure and electrochemical characterizations were 

carried out. 
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CHAPTER II 
 

 

EXPERIMENTAL DETAILS 
 

 

2.1. Materials 

Nickel (Ⅱ) acetate {Ni(CH₃CO₂)₂} tetrahydrate, cobalt (Ⅱ) acetate {Co(CH₃CO₂)₂}   

tetrahydrates, manganese (Ⅱ) acetate {Mn(CH₃CO₂)₂} tetrahydrates, ammonium 

oxalate {(NH4)2C2O4}, potassium persulfate {K2S2O8}, graphene oxide (GO), and 

aniline were purchased from Fisher Scientific, USA. Also, polyvinylidene fluoride 

(PVDF), N-methyl-2- pyrrolidone (NMP), carbon black, and KOH pellets were 

purchased from MTI Corporation, USA.  

 

2.1.1 Binary transition metal oxide 

Various transition metal oxides (i.e., NiO, Co3O4, Fe2O3, and MnO2) have been 

widely utilized as materials for energy conversion and storage devices due to several 

advantages, such as abundant active sites and high redox activity [19]. Therefore, many 

modifications of the structure and morphology of transition metal-based materials have 

been conducted to enhance the performance. Recently, the construction of BTMOs (i.e., 

ZnFe2O4, NiCo2O4, CoFe2O4, NiFe2O4, and MnFe2O4) has emerged as a promising way 

to enhance the electrochemical properties [19]. BTMOs exhibit the synergy effect by 

combining the properties of each metal oxide.  
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Based on findings of several studies, the combination of each TMO not only 

reduced the volume expansion of TMOs, but also improved the electrical conductivity 

[20,21]. For example, the Tarasevich group found that the conductivity of NiCo2O4 is 

more than twice that of NiO and Co3O4, respectively [22]. Consequently, attention to 

BTMOs has increased rapidly. For example, NiCo2O4, NiMn2O4 CoMn2O4 are 

extensively studied due to their high electrochemical performance, low cost, easily 

tunable properties, and lower toxicity [23–28]. Therefore, these materials have been 

extensively employed in various applications, such as sensors, supercapacitors, 

batteries, and electrocatalysts [29–31]. 

 

2.1.2 Reduced graphene oxide  

Graphene oxide and reduced graphene oxide possess large surface area, excellent 

electrical and thermal conductivity, outstanding chemical stability, and good 

mechanical strength [32]. GO is the family group of graphene. It can be easily produced 

by the reaction between graphite and an oxidizing agent. GO has various oxygen 

functional groups, such as carboxyl (C=O), epoxy groups (C-O), and hydroxyl (C-OH) 

[33]. Depending on the synthesis methods and conditions, the position and distribution 

of functional groups can vary, resulting in different material properties. rGO is a form 

of GO. It can be synthesized by the reduction of graphene oxide via several reduction 

processes i.e., hydrothermal, chemical reduction, and photo catalytic processes [34]. 

During the reduction process, oxygen-containing functional groups are removed. 

Figure 2.1 exhibits the production process of GO and rGO from graphite.  
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Figure 2.1: Schematic illustration of the graphite, GO, and rGO. 

 

2.1.3 Polyaniline 

Polyaniline is a conducting polymeric material. It can be easily produced by aniline 

oxidation via chemical or electrochemical process. PANI displays favorable properties 

of high conductivity, environmental thermal stability, and low cost, which make it an 

effective material for energy applications [35]. Chemical structure of PANI is shown in 

Figure 2.2. PANI is effectively utilized as a conducting agent or active materials for 

pseudocapacitor electrodes due to its multiple oxidation states [36]. However, based on 

some research, swelling and shrinkage of the polyaniline was observed during the redox 

reaction [37]. Moreover, performance degradation was noticed at high potential due to 

the generation of over-oxidation. Thus, these phenomena led to the low cycling stability 

of the polymeric material and prevented the extensive usage of the material for 

supercapacitor electrodes.  

As a result, much research has been conducted to solve the issue of the material, 

and it was discovered that producing composite materials is an effective method to 

improve the mechanical stability, chain structure, and electrochemical performances 

[38]. PANI materials are usually integrated with carbon-based materials or metal oxide 
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materials to produce composite materials, which exhibit the enhanced property of the 

composite materials due to the synergy effect of each material [39,40].  

 

Figure 2.2: The chemical structure of polyaniline. 

 

2.2. Synthesis of binary/ternary composite materials  

2.2.1 Synthesis of NiCo2O4, NiMn2O4, MnCo2O4 

NiCo2O4 was synthesized by the facile hydrothermal technique. First, 

Ni(CH3COO)2 solution (5 ml of 0.1 mol/l) and Co(CH3COO)2 (10 ml of 0.1 mol/l) were 

mixed, then stirred for 30 min at room temperature. After that, (NH4)2C2O4 solution (20 

ml of 0.1 mol/l) was added to the mixture solution and stirred for 2 h. The mixture was 

transferred to a 45 ml capacity Teflon-lined stainless-steel vessel and heated 180 °C for 

6 h. When the reactor cooled to room temperature, the product was collected by 

centrifuge and washed with DI water and ethanol. The powder was dried at 60 °C for 

12 h, then it was annealed at 450 °C for 1 h.  

For the preparation of NiMn2O4, Ni(CH3COO)2 solution (5 ml of 0.1 mol/l) and  

Mn(CH3COO)2 (10 ml of 0.1 mol/l) were utilized. In MnCo2O4, Mn(CH3COO)2 

solution (5 ml of 0.1 mol/l) and Co(CH3COO)2 (10 ml of 0.1 mol/l) were combined. 

The synthesis of NiMn2O4 and MnCo2O4 materials further followed the same procedure 

as for the synthesis of NiCo2O4. 
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2.2.2 Synthesis of rGO/NiCo2O4, rGO/NiMn2O4, rGO/MnCo2O4 

First, GO (60 mg) was dispersed in DI water (12 ml). Then, Ni(CH3COO)2 (3 ml of 

0.1 mol/l) and Co(CH3COO)2 solution (6 ml of 0.1 mol/l) were added to the GO 

dispersion, and stirred at room temperature for 30 min. After that, NH4C2O4 solution 

(12 ml of 0.1 mol/l) was added to the GO containing solution and stirred using 

sonication for 2 h. The solutions were then transferred into the autoclave reactor and 

heated at 180 °C for 6 h. Once it reached the room temperature, the remaining powder 

was collected by filtration. The collected powder was dried at 60 °C for 8 h and 

annealed at 450 °C for 1 h to synthesize the rGO/NiCo2O4 material.  

Likewise, rGO/NiMn2O4 material was prepared through the same process sequence 

as rGO/NiCo2O4 after using Ni(CH3COO)2 (3 ml of 0.1 mol/l) and Mn(CH3COO)2 (6 

ml of 0.1 mol/l).  

Also, Mn(CH3COO)2 (3 ml of 0.1 mol/l) and Co(CH3COO)2 solution (6 ml of 0.1 

mol/l) were mixed for the synthesis of rGO/MnCo2O4.  

 

2.2.3 Synthesis of rGO/NiCo2O4/PANI, rGO/NiMn2O4/PANI, rGO/MnCo2O4/PANI 

In-situ polymerization process of aniline occurred in each binary composites for the 

synthesis of the ternary composite materials. In 1 M H2SO4 (100 ml), aniline (0.1 ml) 

was dispersed in an ice water bath. Once the suspension containing aniline was uniform, 

each binary composite (rGO/NiCo2O4, rGO/NiMn2O4, rGO/MnCo2O4) (100 mg) was 

added to the aniline solution and mixed for 30 min. In an ice water bath, K2S2O8 (1 g) 

was slowly added to the solution and stirred for 3 h. The mixture was maintained at 0-

5 °C for 12 h, and final products (rGO/NiCo2O4/PANI, rGO/NiMn2O4/PANI, 

rGO/MnCo2O4/PANI) were obtained after a process of filtering, cleaning, and drying.    
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Table 2.1: The sample name and codes of binary/ternary composite materials. 

Sample Name Sample Code Sample Name Sample Code 

NiCo2O4 NCO rGO/MnCo2O4 GMCO 

NiMn2O4 NMO rGO/NiCo2O4/PANI GNCOP 

MnCo2O4 MCO rGO/NiMn2O4/PANI GNMOP 

rGO/NiCo2O4 GNCO rGO/MnCo2O4/PANI GMCOP 

rGO/NiMn2O4 GNMO   

 

2.3 Structure characterization 

The structure and morphology of synthesized binary transition metal oxides, 

binary/ternary composite materials were investigated by X-ray photo-electron 

spectroscopy (XPS) (Thermo Scientific K-alpha), X-ray diffraction (XRD) (Columbia, 

MD, USA), and scanning electron microscopy (SEM) (Phenom, Oak Park, CA, USA).  

2.3.1. XPS 

XPS was used to study the chemical states, the chemical composition, the atomic 

weight percentage, and binding energy of the as-prepared samples. The surface 

investigation of all materials was conducted using X-rays. First, an X-ray beam hit the 

material, then the X-ray induced the excited electrons from the inner shell electrons, 

which are called “photo-emitted electrons.” The detector probed the kinetic energy of 

photo-emitted electrons to generate the spectrum of all samples. All measurements were 

conducted under vacuum conditions, and XPS with Al Kα line (hv=1486.6 eV) was 

employed.     
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Figure 2.3: Schematic of XPS.  

 

2.3.2. XRD 

XRD measurement was utilized to study the structure and phase purity of all 

synthesized material. The XRD mainly consists of an X-ray tube and detector. The X-

ray generated from the tube hit the sample in the middle of the instrument, then the 

scattered X-ray was recorded by the detector. As the X-ray tube synchronized with the 

detector, X-ray diffraction patterns were observed at different angles. The structure and 

phase of crystalline material was investigated based on Bragg’s law (2d sinθ = nλ) 

where n is order of reflection, λ is the wavelength of X-rays, d is the inter-planner 

spacing, and θ is diffracted angle. The XRD pattern of all samples were obtained by 

Shimadzu X-ray diffractometer (XRD, CuKα1 λ = 1.5406 Å). 
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Figure 2.4: Images of Shimadzu X-ray diffractometer. 

 

2.3.3. SEM 

SEM was employed to investigate the morphology of all synthesized materials. The 

sample’s morphology was obtained as electrons generated from electron beams 

bombaring the sample. The interaction between the incident electron and the sample 

can produce X-rays, Auger electrons, backscattered electrons, and secondary electrons. 

The SEM image is produced by detection of the secondary electrons (all images were 

acquired at 10 keV). 
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Figure 2.5: Schematic of SEM and SEM image of NMO. 

 

2.4. Electrochemical characterization 

Electrochemical characterization of all samples was studied using a PARSTAT MC 

electrochemical workstation (Princeton Applied Research, USA) in conventional three 

electrode systems. Three electrode systems consist of working, counter, and reference 

electrodes. First, a working electrode was prepared by mixing 80 wt% synthesized 

materials (active material), 10 wt% PVDF (binder), and 10 wt% carbon black 

(conductive additive) in the presence of NMP solvent. The Ni foam (substrate) was 

dipped into the paste and dried at 60 °C 48 h. Platinum wire (Pt) was used as a counter 

electrode, and saturated calomel electrode (SCE) or Hg/HgO was used as a reference 

electrode for the study of its performance in water splitting and its characteristics as a 

supercapacitor, respectively. For the study of its characteristics as an electrocatalyst, 

linear sweep voltammetry (LSV), chronoamperometry (CA), and electrochemical 

impedance spectroscopy (EIS) measurements were performed in 1 M KOH electrolyte. 
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In the case of supercapacitor testing, the cyclic voltammetry (CV) and galvanostatic 

charge-discharge (GCD) measurements were employed in 3 M KOH media for the 

analysis of energy storage properties. 

            

 

Figure 2.6: Images of 3 electrode configuration (top-left), 2 electrode configuration 

(top-right), PARSTAT MC electrochemical workstation (bottom). 
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CHAPTER III 
 

 

RESULTS AND DISCUSSION 
 

 

3.1 Structure characterization 

3.1.1 XPS 

XPS measurements were utilized to investigate the chemical composition of all 

materials. Figure 3.1 (a-c) shows the survey spectrum of NCO, GNCO, and GNCOP 

samples. All materials contain 4 elements of Ni, Co, O, and C. In addition, the presence 

of N element was observed from the GNCOP material due to the existence of 

polyaniline in composite material. To further identify the GNCOP material, the high 

resolution of the material was presented. Figure 3.1 (d) shows the Ni 2p1/2 spectrum 

with Ni2+ (871.6 eV) and Ni3+ (873.5 eV), the Ni 2p3/2 spectrum with Ni2+ (853.8 eV) 

and Ni3+ (855.8 eV), and two satellite peaks (861.3 and 879.9 eV) [41]. As seen in 

Figure 3.1 (e), Co 2p XPS spectrum have the major Co3+ and Co2+ peaks at 794.6 and 

796.3 eV for 2p1/2, as well as Co3+ and Co2+ peaks at 779.5 and 780.9 eV for 2p3/2 [42]. 

Figure 3.1 (f) shows the O 1s core level spectrum with the peak at 529.4 eV, which is 

due to the metal-oxygen bond. Also, the peak at 531.0 eV corresponds to the OH− group. 

In addition, impurities and surface defects might affect the presence of peak at 533.4 

eV. In Figure 3.1 (g), three peaks were observed at the binding energy of 284.2, 285.4, 

287.3 eV, which is related to carbon functional groups of C−C, C−N, and C=O, 
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respectively. Moreover, three peaks were observed at 399.5, 402, 405.7 eV in N 1s 

spectrum, which is attributed to the presence of -N=, -NH- functional groups, and the 

interaction between N+ and protons [43].   

Likewise, Figure 3.2 (a-c) and Figure 3.3 (a-c) shows the survey spectrum of NMO 

and MCO based materials. Four different elements of Ni, Mn, O, C and Mn, Co, O, C 

were detected by NMO and MCO-based materials, respectively. Similarly, the nitrogen 

existed for GNMOP and GMCOP composite materials. In Figure 3.2 (e), the Mn 2p 

spectrum was investigated in detail at a high resolution. Two peaks of Mn 2p3/2 and Mn 

2p1/2 configurations were observed at 641.6 and 653.4 eV, which was ascribed to the 

Mn3+ and Mn2+, respectively [44]. The spectrum of other elements showed similar 

characteristics to those of NCO-based materials. 
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Figure 3.1: XPS survey spectra for (a) NCO, (b) GNCO, (c) GNCOP samples and 

high resolution of GNCOP for (d) Ni 2p, (e) Co 2p, (f) O 1s, (g) C 1s, and (h) N 1s. 
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Figure 3.2: XPS survey spectra for (a) NMO, (b) GNMO, (c) GNMOP samples and 

high resolution of GNMOP for (d) Ni 2p, (e) Mn 2p, (f) O 1s, (g) C 1s, and (h) N 1s. 
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Figure 3.3: XPS survey spectra for (a) MCO, (b) GMCO, (c) GMCOP samples and 

high resolution of GMCOP for (d) Mn 2p, (e) Co 2p, (f) O 1s, (g) C 1s, and (h) N 1s. 

 

3.1.2 XRD 

XRD measurements of all materials were carried out in a range of 2θ = 10 to 80°.  

Figure 3.4 shows the XRD spectrum of NCO-based materials. Peaks were observed at 

30, 36, 45, 60, and 65°, which correspond to (220), (311), (400), (511), and (440) planes, 

respectively [45,46]. As seen in Figure 3.5, peaks of NMO based materials were 

located at 35 and 41°, which are indexed to (301) and (400) planes, respectively [47]. 
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attributed to the (311), (400), (511), and (531) planes, respectively [48]. These results 

indicates that each material has similar peaks of NiCo2O4, NiMn2O4, and MnCo2O4 

materials, respectively. Most peaks were shown in the broader form, which is due to 

the poor crystallinity behavior of most materials. 

 

 

Figure 3.4: XRD pattern for NCO, GNCO, and GNCOP samples. 

 

Figure 3.5: XRD pattern for NMO, GNMO, and GNMOP samples. 
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Figure 3.6: XRD pattern for MCO, GMCO, and GMCOP samples. 

 

3.1.3 SEM 

The morphology of all samples was studied using SEM measurements. As prepared 

samples were detected at high and low resolution. As seen in Figure 3.7-9, all materials 

possess rod-like structures, and the particles were well distributed. In addition, the 

reduction in particle size was observed when rGO and PANI were combined with 

binary transition metal oxide. The size reduction can help to enhance faster ion & 

electron transport and higher surface reactivity [49,50]. Consequently, a rod-like 

materials facilitates favorable electrochemical reaction for all samples, leading to 

excellent energy conversion and storage properties of all samples. 
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Figure 3.7: SEM images of (a,b) NCO, (c,d) GNCO, and (e,f) GNCOP materials at 

high and low resolutions. 
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Figure 3.8: SEM images of (a,b) NMO, (c,d) GNMO, and (e,f) GNMOP materials at 

high and low resolutions. 
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Figure 3.9: SEM images of (a,b) MCO, (c,d) GMCO, and (e,f) GMCOP materials at 

high and low resolutions. 
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3.2 Electrochemical measurements 

3.2.1 Electrocatalytic performance towards water splitting 

Figure 3.10 (a-c) shows the OER polarization curves of the as-prepared electrodes. 

These curves were obtained from the linear sweep voltammetry (LSV) measurements 

at a scan rate of 2 mV/s. The GNCOP, GNMOP, and GMCOP ternary composite-based 

electrodes showed a lower overpotential of 342, 340, and 382 mV respectively, while 

NCO, GNCO, NMO, GNMO, MCO, and GMCO electrodes required an overpotential 

of 350, 347, 421, 420, 388, and 385 mV respectively to reach the current density of 10 

mA/cm2. In addition, it was observed that most ternary composite-based electrodes 

generated higher current after the start of the reaction. For example, the current densities 

of 118, 78, and 44 mA/cm2 for GNCOP, GNMOP, and GMCOP electrodes were 

achieved at a potential of 1.65 V, which is higher than other electrodes.  

As shown in Figure 3.11 (a-c), the Tafel slopes of all electrodes were plotted using 

the following equation (3.1) [51]: 

η = a + b log j                                                                                                                (3.1)                        

where η is the overpotential, a is the constant, b is Tafel slope, and j is the current 

density.  Tafel slope of electrodes was 66, 58, 68, 104, 109, 83, 122, 75, and 65 mV/dec 

for NCO, GNCO, GNCOP, NMO, GNMO, GNMOP, MCO, GMCO, and GMCOP, 

respectively. A lower Tafel slope suggests faster kinetics of a material to produce 

oxygen gases [52].  

In Figure 3.12 (a-c), HER polarization curves of all electrodes were obtained at a 

scan rate of 2 mV/s. Overpotentials of 134, 95, and 117 mV were needed for GNCOP, 

GNMOP, and GMCOP electrodes respectively to produce the current density of 10 
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mA/cm2. It shows that each ternary composite electrode had superior activity in 

comparison with each binary transition metal oxide and binary composite electrode i.e., 

NCO (168 mV), GNCO (161 mV), NMO (105 mV), GNMO (102 mV), MCO (128 

mV), and GMCO (119 mV) electrodes.  Also, most ternary composite GNCOP, 

GNMOP, and GMCOP electrodes generated higher current density of 115, 299, 222 

mA/cm2 at the potential of - 0.3 V (V, RHE) compared to other binary transition metal 

oxides and binary composite materials.  

As seen in Figure 3.13 (a-c), the Tafel slope of electrodes was calculated, which 

was 124, 144, 140, 154, 142, 135, 148, 130, and 123 mV/dec for NCO, GNCO, GNCOP, 

NMO, GNMO, GNMOP, MCO, GMCO, and GMCOP electrodes, respectively.  

Figure 3.14 shows the Nyquist plots for all electrodes obtained by the EIS 

measurements at 1.65 V (V, RHE) in the range from 0.05 Hz to 10 kHz with an AC 

amplitude of 10 mV. Figure 3.14 (a) indicates the equivalent electrical circuit. R1, R2, 

and C suggests the electrolyte resistance, charge transfer resistance, and interfacial 

capacitance, respectively [53]. The starting point of the plot suggests electrolyte 

resistance. It displayed ~ 2.7 Ω for all electrodes since the experiment was conducted 

in the same alkaline media. Furthermore, the diameter of the semicircle representing 

the charge transfer resistance at the interface between electrode and electrolyte was 4.5, 

3.1, 2.4, 17.3, 15.2, 7.4, 18.3, 6.8, 6.6 Ω for NCO, GNCO, GNCOP, NMO, GNMO, 

GNMOP, MCO, GMCO, and GMCOP, respectively. Given that the GNCOP, GNMOP, 

and GMCOP ternary composite-based electrodes have low overpotential, high current 

density at a given current density, low Tafel slopes, and low charge transfer resistance, 

these electrodes have superior electrocatalytic activity to split the water into hydrogen 

and oxygen gases.  
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The stability of the electrocatalysts is also one of the important factors to determine 

the effective electrocatalyst. To study the stability of all electrocatalysts, the 

comparison of LSV 1 vs LSV 1k curves and chronoamperometry measurement were 

employed. First, the LSV 1k graph was achieved by performing 1,000 CV cycles at the 

potential range of 0.2 – 0.55 V (V, SCE). As seen in Figure 3.15 and Figure 3.16, only 

slight differences between the graphs were observed from all samples. Besides, stable 

i-t curves were observed measured by CA experiment at the high potential of 1.6 V (V, 

RHE) for a long period of time, as shown in Figure 3.17. All electrodes showed stable 

performance even at high current density, and the slight fluctuations observed in the 

graph are due to gas generation. 
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Figure 3.10: OER polarization curves of all electrodes. 
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Figure 3.11: Tafel slopes of all electrodes for the OER. 

 

 

 

Figure 3.12: HER polarization curves of all electrodes. 
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Figure 3.13: Tafel slopes of all electrodes for the HER. 
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Figure 3.14: (a) Schematic of an electrical circuit, (b-d) the Nyquist plot of all 

electrodes at 1.65 V (V, RHE). 
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Figure 3.15: 1 vs 1k OER polarization curves of all electrodes. 
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Figure 3.16: 1 vs 1k HER polarization curves of all electrodes. 
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Figure 3.17: CA curves of all electrodes at 1.6 V (V, RHE). 
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at a high current density for 24 h.  

These results show that the combination of rGO and PANI with binary transition 

metal oxide as a composite form improved the electrocatalytic properties. Consequently, 

ternary composite electrodes showed good performance in the 3-electrode system as 

well as electrolyzer devices displayed high activity and stable performances. 

 

 

 

Figure 3.18: (a) Polarization curve, (b) the Nyquist plot at 1.7 and 2 V, (c) 1 vs 1k 

polarization curves, (d) CA curve for GNCOP electrode using two-electrode water 

electrolyzer configuration. 
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Figure 3.19: (a) Polarization curve, (b) the Nyquist plot at 1.7 and 2 V, (c) 1 vs 1k 

polarization curves, (d) CA curve for GNMOP electrode using two-electrode water 

electrolyzer configuration. 
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Figure 3.20: (a) Polarization curve, (b) the Nyquist plot at 1.7 and 2 V, (c) 1 vs 1k 

polarization curves, (d) CA curve for GMCOP electrode using two-electrode water 

electrolyzer configuration. 
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cathodic peaks towards positive and negative directions suggests that the as-prepared 

materials have great reversibility with low resistance, and also indicates the 

contribution of the diffusion-controlled faradic reaction for the charge transfer.  

To examine the charge storage mechanism of all electrodes, the following equation 

was utilized (3.2) [57]: 

i = av𝑏                                                                                                                         (3.2)                        

where i is the peak current density, v is a scan rate, and a and b are variable parameters 

of all materials. Depending on the value of b, the charge storage contribution can be 

determined. When b is 0.5, charges are only stored by diffusion-controlled faradic redox 

reaction. Furthermore, capacitive mechanism is only utilized when b is 1.  

In Figure 3.23, the b value of all electrodes is 0.8, 0.78, 0.77, 0.62, 0.61, 0.64, 0.63, 

0.64, and 0.61 for NCO, GNCO, GNCOP, NMO, GNMO, GNMOP, MCO, GMCO, 

and GMCOP electrodes, respectively. These results indicate that all electrodes have a 

hybrid charge storage mechanism combined with diffusion and capacitance effects. For 

a detailed understanding of the charge storage mechanism, the following equation was 

employed (3.3) [57]: 

i = 𝑘1v + 𝑘2v1/2                                                                                                                (3.3)                        

where k1v is the capacitive contribution and k2v
1/2 is the diffusion-controlled faradic 

redox reaction contribution.  

Figure 3.24 shows the capacitance and diffusion contribution of all samples at scan 

rates of 10 and 100 mV/s, respectively. At the lower scan rate of 10 mV/s, the 

capacitance and diffusion effects were 40 and 60%, 43 and 57%, 45 and 55%, 7 and 

93%, 17 and 83%, 14 and 86%, 14 and 86%, 14 and 86%, and 12 and 88% for NCO, 

GNCO, GNCOP, NMO, GNMO, GNMOP, MCO, GMCO, and GMCOP electrodes, 
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respectively. On the other hand, at a high scan rate of 100 mV/s, these capacitance and 

diffusion contributions were 68 and 32%, 70 and 30%, 72 and 28%, 20 and 80%, 39 

and 61%, 35 and 65%, 34 and 66%, 33 and 67%, and 31 and 69% for NCO, GNCO, 

GNCOP, NMO, GNMO, GNMOP, MCO, GMCO, and GMCOP electrodes, 

respectively. An increase in the capacitance effect was observed at a higher scan rate 

of 100 mV/s compared to a lower scan rate of 10 mV/s, which affected energy storage 

properties of all electrodes. To see the detailed information about the specific 

capacitance (C) of all electrodes, the following equation was utilized (3.4) [58]: 

C (F/g)  =  
A

v× ∆𝑉 ×m
                                                                                                           (3.4) 

Where A is the area under the CV graph (A), V is the working potential (V), v is the 

scan rate (mV/s), and m is the weight of all active materials (g). 

Figure 3.25 shows a specific capacitance of 206, 261, 243, 211, 285, 248, 145, 189, 

205 F/g for the NCO, GNCO, GNCOP, NMO, GNMO, GNMOP, MCO, GMCO, and 

GMCOP electrodes respectively at a current density of 2 mV/s. The specific 

capacitance of all electrodes decreased as the scan rate increased. This is because the 

diffusion-controlled faradic reaction mainly takes place at the low scan rate, which 

facilitates the electrolyte moving into the deep inner part of the material, resulting in 

higher specific capacitance. On the other hand, at a higher scan rate, more capacitance 

effect takes place on the outer surface of the material compared to a lower scan rate, 

resulting in lower energy storage performance [59]. The GCD measurements were 

conducted using all electrodes in the range of 0.5-30 A/g.  

Figure 3.26 shows the GCD curves of all electrodes. Non-linear behavior of the 

GCD curves was observed from all electrodes, suggesting that all electrodes are of the 

pseudo capacitive type, which is in good agreement with the CV measurements. In more 
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detail, the discharge curve with nonlinear shape can be divided into three sections: a 

rapid voltage drop in the beginning, then a voltage plateau followed by a fast voltage 

drop at the end. This phenomenon is due to the internal resistance, the occurrences of 

faradaic redox reaction between electrode materials and electrolyte, and the presence 

of electric double layer capacitors, respectively [60]. According to the following 

equation, the specific capacitance of all electrodes was calculated (3.5) [61]: 

𝐶 (𝐹/𝑔) =  
𝐼 × ∆𝑡

∆𝑉 ×𝑚
                                                                                                                 (3.5) 

where I is the discharge current range (A), Δt is the discharge time range (s), ΔV is the 

working potential range (V), and m is the mass (g) of each material.  

Figure 3.27 shows a specific capacitance of 80, 94, 68, 54, 63, 44, 21, 51, 53 F/g 

for NCO, GNCO, GNCOP, NMO, GNMO, GNMOP, MCO, GMCO, and GMCOP 

electrodes respectively at 0.5 A/g.  

Figure 3.28 exhibited the Ragone plot showing the relationship between energy (E) 

and power density (P). The energy and power density of all electrodes were obtained 

by the following equations (3.6-7) [62]: 

𝐸 (𝑊ℎ/𝑘𝑔) =
1

2
× 𝐶 × 𝑉2                                                                                                   (3.6) 

𝑃 (𝑊/𝑘𝑔) =
𝐸

𝑡
                                                                                                                     (3.7) 

The maximum energy and power density of all electrodes was seen in Table 3.1.  

The stability of the supercapacitor electrodes was also assessed, as shown in Figure 

3.29. The 7,000 charge-discharge processes were carried out using GCD measurements. 

Stable cycling performance was observed from all electrodes, and shows a high 

retention of 93, 92, 72, 98, 88, 96, 97, 82, and 97% for the NCO, GNCO, GNCOP, 

NMO, GNMO, GNMOP, MCO, GMCO, and GMCOP electrodes, respectively. In 
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addition, a high Coulombic efficiency of average 99% was achieved for all as-prepared 

electrodes. 
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Figure 3.21: CV curves of all electrodes at the scan rate from 2-300 mV/s. 
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Figure 3.22: Peak current density vs (scan rate)1/2 plots for all electrodes. 

 

 

 

Figure 3.23: Log (current density) vs log (scan rate) plots for all electrodes. 
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Figure 3.24: Diffusion and capacitive effects for all electrodes at the 10 and 100 

mV/s. 
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Figure 3.25:  A specific capacitance of all electrodes at various scan rate (2-300 

mV/s).  
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Figure 3.26: GCD curves of all electrodes at the current density from 0.5-30 A/g. 

 

 

 

Figure 3.27:  A specific capacitance of all electrodes at various current density (0.5-

30 A/g). 
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Figure 3.28:  The Ragone plot of all electrodes.  
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Table 3.1: The maximum energy and power density of all electrodes. 

Sample Name Maximum energy density (Wh/kg) Maximum Power density (W/kg) 

NCO 3.98 9,000 

GNCO 4.79 9,000 

GNCOP 2.9 9,000 

NMO 2.4 4,500 

GNMO 2.57 6,000 

GNMOP 1.8 4,500 

MCO 0.87 6,000 

GMCO 2.2 6,000 

GMCOP 2.3 6,000 
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Figure 3.29:  Capacitance retention and coulombic efficiency of all electrodes up to 

7,000 charge-discharge cycles.  
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CHAPTER IV 

 

 

CONCLUSION 

 

 

Ternary composite materials were prepared via successive hydrothermal synthesis 

and polymerization of aniline. All prepared materials possess a uniform rod-like 

structure, and these materials were utilized as electrocatalysts for the water splitting 

reaction and as the electrode for a supercapacitor. Ternary composite materials showed 

advanced electrocatalytic properties compared to binary transition metal oxide and 

binary composite materials. GNCOP, GNMOP, GMCOP electrodes showed not only 

lower OER overpotential of 342, 340, and 382 mV, but also lower HER overpotential 

of 134, 96, and 117 mV at the current density of 10 mA/cm2.  

Considering the low overpotential of ternary composite materials, a two-electrode 

electrolyzer was configured by two parallel electrodes (GNCOP// GNCOP), (GNMOP// 

GNMOP), and (GMCOP// GMCOP). These electrolyzers delivered the 1.74, 1.76, and 

1.75 V to generate the current density of 10 mA/cm2, as well as showed a stable 

performance at the high current density over 24 h. The specific capacitance of ternary 

composite electrodes was in the range of 145-285 F/g at a scan rate of 2 mV/s. Also, 

the energy and power density of these electrodes was in the range 0.87 to 4.79 Wh/kg 

and 4,500 to 9,000 W/kg, respectively. Additionally, all ternary composites-based 

electrodes showed high capacitance retention with average 99% coulombic efficiency 

up to 7,000 cycles.   
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