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ELECTROCHEMICAL STUDIES OF POLY(3-(4-METHOXYPHENYL)[5] 

FERROCENOPHANE-1,5-DIMETHYLENE AND COPOLYMERS WITH STYRENE 

AND N-PHENYLMALEIMIDE 
 

 

An Abstract of Thesis by 

Niyati Arora 

 

 

Ferrocene is an organometallic compound in which an iron atom is sandwiched between 

two cyclopentadienyl rings. Ferrocene containing polymers receive a considerable amount 

of research because of their known chemistry, stable redox reactions and useful electrical 

systems. Noteworthy are their uses as electrode coatings, electro-catalysts and as an anode 

in battery applications. In this research, the synthesis and polymerization of a 

ferrocenophane diene is reported. Using a Wittig reaction 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene was synthesized from 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dione. The homopolymer and copolymers with 

styrene and N-phenylmaleimide were synthesized via free radical polymerization from 3-

(4-methoxyphenyl)[5]ferrocenophane-1,5-dimethylene using AIBN as the initiator. These 

polymers were characterized using 1H-NMR, 13C-NMR and FTIR spectroscopy and 

spectra for each polymer were consistent with the corresponding structure. UV-Vis spectra 

of each polymer showed an absorbance at 440nm which is consistent with a [3] 

ferrocenophane. Cyclic voltammetric studies revealed the chemical reversibility of the 

polymers. Thermogravimetric results showed their thermal stability to approximately 

390C. 
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CHAPTER I 

 

 

1. INTRODUCTION 

 

 

1.1 Ferrocene 

Ferrocene was accidently discovered in 1951 at Duquesne University in Pittsburgh, 

Pennsylvania by P.L. Paulson and T.J. Kealy during an attempt to synthesize fulvalene[1]. 

Cyclopentadienyl magnesium bromide was reacted with iron (II) chloride in diethyl ether 

and ferrocene was formed. During the same period ferrocene was synthesized by Treboth, 

Tremane and Miller by reacting cyclopentadiene with an iron catalyst at 300C. The 

ferrocene structure is an iron atom “sandwiched” between cyclopentadiene anions, each 

giving 6 electrons to the Iron (II) cation[2] as shown in Figure 1. Ferrocene shows 

diamagnetic behavior and also possess nontoxicity, aromaticity and very interesting 

photochemical properties. Ferrocene behaves as a donor when present in the vicinity of 

an electron acceptor and thus can form charge transfer complex under photoexcitation 

phenomena. Ferrocene only shows one C-H stretch in the Infrared Spectrum which 

proves that all carbon atoms present in the molecule are equivalent[2]. The uniformity of 

the protons are also shown by the singlet shown in 1H-NMR spectrum. It is an 

organometallic compound in which bonding occurs between the d-orbitals of the iron (II) 

metal center and p- orbitals of the cyclopentadienyl ligands (C5H5)
-. This type of bond is 

known as metal-ligand bond.  
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Figure 1.  Ferrocene 

  The name ferrocene was given to this molecule because of its resemblance to the aromatic 

character of benzene[3]. It contains 6 delocalized electrons for each CP ring like benzene. 

When a strong base is used to deprotonate the cyclopentadiene ring the H+ is expelled from 

the tetrahedral carbon in the structure. Then the lone pair of electrons  resonates throughout 

the CP ring. The cyclopentadienyl rings are characterized by highly nucleophilic character 

and can undergo electrophilic substitution reactions, including Friedel-Crafts acylation, 

alkylation and sulfonation[4]. However, direct nitration and halogenation can disrupt the 

molecule by oxidizing the iron atom[4]. Moreover, the oxidizing potential of the molecules 

can be changed by adding functional groups which can be electron donating or withdrawing 

in character, which allow a diverse range of applications such as electrical conducting 

polymers and inclusion into solar cells[5],[6]. 
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1.2 Electronic Properties of Ferrocene  

          Ferrocene is an electron rich and electrically active material which in turn possess 

electron rich aromatic behavior. The six d-electrons of the Fe2+ ion are bonded with the six 

-electrons of the cyclopentadienyl anions which is in accordance to 18-electron stability 

rule for metals. The occupied bonding orbitals gives it the electronic stability[7]. The 

molecular orbitals diagram given below explains these phenomena. (Figure 2) 

 

  The symmetry of the ferrocene shows the overlapping molecular orbitals, between the 

central iron atoms (3d, 4s and 4p) along with the ligand orbitals.[8] The major aspects of 

the electronic structure of ferrocene are explained below:[7] 

▪ Lowest energy ligand orbitals- a1g and a2u 

▪ Highest energy metal orbitals- 3dz
2/4s, 4pz  

▪ Essential metals orbitals- e2g 

▪ Two strong -bonds are formed by overlapping of iron orbitals (dxy & dyz) with the 

ligands e2g orbitals. These -bonds are responsible for the stability of ferrocene. 

▪ Unoccupied weak anti-bonding orbitals in- e’1g  

▪ Unoccupied non-bonding orbitals- a’1g 

▪ Unoccupied weakly bonding orbitals- e2g 

▪ HOMO for ferrocene- degenerate - e2g or a’1g
[9] 

▪ LUMO for ferrocene- out of phase dxz/dyz orbitals[10] 

The electrochemical properties of the substituted ferrocene compounds such as ferrocene 

polymers are improved by the strong interaction between 𝜋-bonding of cyclopentadienyl 

rings and 𝜋-conjugated main chains.[11], [12], [13] 
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1.3  Ferrocene Polymers  

           Ferrocene when incorporated in polymers possess different and unique properties 

which include increase in redox stability, charge transfer complexes, reversible 

oxidation[14], [15], [16], electrocatalysis[17], battery applications[18], electrode coating[19], and 

resistance to thermal degradation. It has been successfully incorporated into polymers 

either pendant or within the polymer chain. Although the first polymer with ferrocene 

incorporated in side chain was developed in 1951, the first polymer having ferrocene within 

the main polymer backbone was developed in mid 1970’s. Examples of ferrocene in the 

main chain polymer and pendant to the main polymer are shown in Figures 3 and 4, 

respectively. 

Fe

R

 

Figure 3. Ferrocene as the main chain polymer having 1,1’ -substitution patterns of 

spacers about ferrocene unit. 

Fe
 

Figure 4. Ferrocene as the side chains of main polymer 

Formation of ferrocene polymers have been limited by their difficulty to obtain high 

molecular weights, due to their ability to form zwitterion.[20] During free radical 

polymerization, the formation of zwitterion occurs due to transfer of electron from the 

ferrocene to the end of the growing polymer chain. This termination step increases 

polydispersity and lowers molecular weight.  
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1.4 New Polymerization Techniques 

          To circumvent polymerization difficulties with the polymerization of vinyl 

ferrocene, new techniques have been developed to obtain high molecular weight ferrocene 

polymers. Ring-opening polymerization of [1] or [2]ferrocenophanes has been reported by 

Manners.[21], [22]  Ring opening polymerization of these monomers is a type of chain growth 

polymerization which can occur by free radical, anionic or cationic mechanism. This 

polymerization was first reported for the thermal ring-opening of silyl[1]ferrocenophane 

in 1992 as shown in Figure 5. An interesting property of this polymer was two oxidation 

waves in the cyclic voltammogram, indicating electronic communication between 

ferrocenyl moieties.  These electronic communications arose from the d-p orbital overlap 

between the silyl moiety and the cyclopentadienyl rings which facilitated electronic 

communication between neighboring ferrocenes. Subsequent research extended this work 

to include additional functional groups such as sulfur, phosphorous, or ethylene.[23],[24] 

SiR2Fe
Fe

SiR2
D

 

Figure 5.  Thermal polymerization of silyl[1]ferrocenophane 

        Another method to facilitate polymerization of ferrocene monomers was 

accomplished by holding two vinyl moieties in close proximity within the ferrocenyl 

structure.  The polymerization of 3-phenyl[5]ferrocenophane-1,5-dimethylene by radical 

polymerization was reported in 1996. [25] (Figure 6) The rigid structure of this monomer 

places the vinyl moieties in close proximity facilitating cyclopolymerization, producing a 

[3]ferrocenophane.  In addition, upon cyclization, the resulting radical is much less 
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sterically hindered than observed for the polymerization of vinylferrocene.  Reducing steric 

hindrance facilitated polymerization and molecular weights up to ca. 20,000 were obtained.   

In addition, the resulting polyferrocenophane showed two oxidation potentials in the cyclic 

voltammograms, indicating electronic communication between ferrocenyl moieties.  Since 

the ferrocenyl group is orthogonal to the polymer backbone, communications occur 

through cofacial stacking of the cyclopentadienyl rings through pi-pi interaction.  

 

Fe
AIBN

Fe  

Figure 6.  Cyclopolymerization of 3-Phenyl[5]ferrocenophane-1,5-dimethylene 

 Copolymerization of this ferrocenophane was performed with styrene to isolate the 

ferrocene moieties and produce a random copolymer as shown in Figure 7. As expected 

for copolymerization with styrene, the ferrocenyl moieties were isolated and thus the cyclic 

voltammogram only showed one oxidation wave. Copolymerization of this monomer with 

various N-substituted maleimides has also been reported.[26] as shown in Figure 8. These 

copolymers were synthesized to study donor-acceptor interactions between alternating  

electron rich ferrocenophane and electron deficient maleimide groups. Oxidation potentials 

of these polymers were higher than expected for a ferrocene containing polymer and UV 

spectrum showed absorbencies into the visible region.  These results supported interactions 

between the ferrocenyl and maleimide moieties. 
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Fe
AIBN

Fe

+

 

Figure 7. Copolymerization of 3-Phenyl[5]ferrocenophane-1,5-dimethylene with 

Styrene 

Fe
AIBN

Fe

+ NO O

R

NO O

R

 

Figure 8. Copolymerization of 3-Phenyl[5]ferrocenophane-1,5-dimethylene  

with N-substituted Maleimide 

1.5 Project Rationale  

         Poly(3-phenyl[5]ferrocenophane-1,5-dimethylene) exhibited interesting electronic 

properties and improved polymerizability compared to polyvinylferrocene.  However, the 

molecular weight of this polymer was insufficient to cast films which limited its study.  To 

improve film forming ability, side groups can be added to the phenyl moiety to improve 

entanglement of the polymer chains.  To this end, this thesis reports the synthesis, 

polymerization and copolymerization of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-

dimethylene. The addition of a methoxy group to the phenyl moiety is the initial step for 

the inclusion of side groups to the polymer. In addition to the homopolymer, polymers with 

styrene and N-phenylmaelimide were synthesized to obtain random and alternating 
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copolymers, respectively. To understand the effects of the methoxy group, the polymers 

were studied by UV-vis spectroscopy, cyclic voltammetry and TGA.  
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CHAPTER II 

 

 

2. EXPERIMENTAL 

 

 

2.1 Materials  

         All materials were purchased from Acros Organics and utilized as received unless 

otherwise stated. A Witting reaction was used to synthesize the 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene according to a literature procedure.[25] 

Chromatography was performed using silica gel (60 A) (Acros organic) as the stationary 

phase with dichloromethane as the mobile phase. 

2.2  Synthesis of Poly 3-(4-Methoxyphenyl)[5]Ferrocenophane-1,5-Dimethylene and 

Copolymers with Styrene and N-Phenylmaleimide   

 2.2.1 Synthesis of 1,1-diacetylferrocene 

             Dichloromethane (150 mL) along with aluminum chloride (9.4 g, 0.071 mol) was 

added to a conical flask. After establishing a nitrogen atmosphere, acetyl chloride (5.5 g, 

0.071 mol) was added and the solution was stirred for 30 minutes. Over a period of 15 

minutes, ferrocene ( 5.07 g, 0.027 mol) was added to the solution, and then the reaction 

was stirred for 18 hours. The solution was poured over ice in a 500 mL beaker to neutralize 

the aluminum chloride. The organic phase was separated using a separatory funnel and the 

solvent was removed by rotary evaporator. The crude product was recrystallized using 

isopropyl alcohol. The crystals were collected by filtration and dried using a vacuum oven 
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overnight. 1,1-diacetylferrocene (4.8 g) was recovered in a 64% yield. IR(cm-1): 3100, 

1680 and 1500. 1H-NMR (CDCl3, 𝛿 ppm): 4.67 (4H), 4.51 (4H), 2.5 (6H).  

 2.2.2 Synthesis of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dione 

             1,1-diacetylferrocene (4.0 g, 0.015 mol), along with anisaldehyde (1.96 g, 0.01 

mol) and 95% ethanol (150 mL) were added to 150 mL Erlenmeyer flask containing a stir 

bar and the mixture was stirred for 30 minutes. After 30 minutes, potassium hydroxide 

(0.48 g, 0.0086 mol) was added and the reaction was stirred for 18 hours at room 

temperature. Vacuum filtration was used to collect the product and then it was dried in a 

vacuum oven overnight. 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dione (4.26 g) was 

recovered in a 74% yield. IR (cm-1): 3000 and 1690. 1H-NMR (CDCl3, 𝛿 ppm) peaks at 

7.27-6.89 (4H), 4.58-4.87 (8H), 4.30 (1H),  3.815 (3H) and 2.47-2.93 (4H). 

2.2.3 Synthesis of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dimethylene 

            Methyltriphenylphosphonium bromide (2.4 g, 0.011 mol) along with 

tetrahydrofuran (70 mL) was added to 2-necked round bottom flask. The mixture was 

stirred under nitrogen atmosphere. N-butyllithium was added (8.2 mL, 2.5 M) in THF and 

the solution was stirred for 30 minutes. 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dione 

(2.4 g, 0.0068 mol) was added and the reaction was stirred for 24 hours. After completion 

of the reaction, distilled water (1.5 mL) was added to the solution and the solvent was 

removed with a rotary evaporator. Column chromatography was used to purify the product 

using silica gel with dichloromethane. The yield was 1.6 g (66%) of 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene. IR (cm-1): 3092, 3000, 2910 and 

1670. 1H-NMR (CDCl3, 𝛿 ppm): 6.90 (4H), 5.25 (2H), 4.79 (2H), 4.45, 4.34, 4.30, 4.20, 
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4.1 (8H), 3.18 (3H) and 2.5 – 2.6 (4H). 13C-NMR (CDCl3, 𝛿 ppm): 158.1, 139.5, 127.7, 

113.8, 108.7, 85.3, 70.8, 69.2, 64.2, 54.7, 43.9 and 38.5 

 2.2.4 Homo-polymerization of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-    

dimethylene 

                 To a 15 mL 2-necked round bottom flask with a stir bar was added 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene (0.21g ) and chlorobenzene (15 mL). 

A nitrogen atmosphere was established and AIBN (0.0040 g) was added. The mixture was 

stirred at 80°C for 18 hours. The reaction was precipitated after polymerization by dropwise 

addition into rapidly stirring petroleum ether. The solid was collected by vacuum filtration 

after precipitation. The homopolymer (0.20 g) was recovered in a 98% yield. IR (cm-1) 

3000, 2900 and 1610. 1H-NMR (CDCl3,  ppm) 6.54-7.26 (4H), 4.34 (9H), 3.80 (3H) and 

0.8-2.1 (8H).  

2.2.5 Polymerization of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dimethylene with 

N-Phenylmaleimide 

            In 15 mL 2-necked round bottom flask with a stir bar was added 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene (0.21 g), phenylmaleimide (0.04 g, 

0.0015 mol) and chlorobenzene (15 mL). A nitrogen atmosphere was established and 

AIBN (0.0026 g) was added. The mixture was stirred at 80°C for 18 hours. The reaction 

was precipitated after polymerization by dropwise addition into rapidly stirring petroleum 

ether. The solid was collected by vacuum filtration after precipitation. The copolymer (0.19 

g) was recovered in a 92% yield. IR (cm-1): 3000, 2900 and 1700. 1H-NMR (CDCl3,  

ppm): 6.54-7.27 (9H), 4.34 (9H), 3.8 (3H) and 2.1 (4H). 

 



12 
 

 

 2.2.6 Polymerization of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dimethylene 

with Styrene. 

                In 15 mL 2-necked round bottom flask with a stir bar was added 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene (0.21 g), styrene (0.027 g, 0.0015 

mol) and chlorobenzene (15 mL). A nitrogen atmosphere was established and AIBN 

(0.0026 g) was added. The mixture was stirred at 80°C for 18 hours. The reaction was 

precipitated after polymerization by drop wise addition into rapidly stirring petroleum 

ether. The solid was collected by vacuum filtration after precipitation. The copolymer (0.18 

g) was recovered in a 93% yield. IR (cm-1): 3000 and 2900. 1H-NMR (CDCl3,  ppm): 

6.54-7.27 (9H), 4.34 (9H), 3.8 (3H) and 2.1 (10H). 

2.3 Instrumentation 

         Fourier Transform Infrared Spectroscopy (FT-IR) was done using a Perkin Elmer 

Spectrum 2 Spectrometer. All NMR spectra were obtained using a Bruker DPX-300 MHz 

spectrometer. Cyclic Voltammetry was performed using Gamry Interface 1000 potentiostat 

with a platinum working electrode and a carbon counter electrode, and an Ag/Ag+ wire as 

a reference. Gel permeation chromatography (GPC) measurements were done using a 

JMDC-4 Waters 515 HPLC pump, 2410 differential refractometer, set of one 3007.8 mm 

phennogel 5 column. Mw, Mn and polydispersity were calculated based on peaks 

compared to a polystyrene standard calibration. UV-Vis spectroscopy was performed using 

a Genesys 150 UV-Visible Spectrophotometer. 
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2.4 Electrochemical Studies 

         For electrochemistry studies, solutions were prepared by dissolving each polymer (1 

mM) with tetrabutylammonium hexafluorophosphate (100 mM), tetrabutylammonium 

perchlorate (100 mM) or tetrabutylammonium triflate (100 mM) as a supporting 

electrolyte, in dichloromethane. 

             The cyclic voltammetry of thin film materials was done by casting polymer films 

directly on the surface of an electrode. Thin films were prepared by casting 8 L of the 

polymer solution of the polymer and air drying for about 10-15 minutes. Electrolyte 

solution were prepared by using sodium perchlorate (0.1 M) or sodium chloride (0.1 M) as 

the supporting electrolyte for the polymers.  
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CHAPTER  

 

 

3. RESULTS & DISCUSSIONS 

 

 

3.1 Synthesis and Characterization of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-

dimethylene. 

 

         The synthesis of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dimethylene was 

performed using a procedure in literature. Friedel-Crafts conditions were established for  

acylation of ferrocene. 1,1’-diacetylferrocene was condense with anisaldehyde to form 3-

(4-methoxyphenyl)[5]ferrocenophane-1,5-dione. 3-(4-methoxyphenyl)[5]ferrocenophane-

1,5-dione was recovered in a 74% yield.  Figures 9 and 10 show the FT-IR and  1H- NMR 

spectra for 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dione, respectively. The FT-IR 

spectrum shows peaks at 3000 cm-1 for the aromatic C-H stretching and 1690 cm-1 for the 

carbonyl stretching. In the 1H-NMR spectrum of the dione, signals were observed at 7.2 

ppm and 6.8 ppm for the phenyl protons, 4.87 ppm, 4.61 ppm and 4.58 ppm  for ferrocenyl 

protons, 4.30 ppm for the benzyl proton, 3.81 ppm for methoxy protons, and 2.93 ppm and 

2.4 ppm for methylene protons.  
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Figure 9: FT-IR spectrum for 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dione 

 

Figure 10: 1H-NMR spectrum for 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dione 

 

 The monomer was formed using a Wittig reaction by converting 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dione to 3-(4-methoxyphenyl)[5]ferrocenophane-

1,5-dimethylene as shown in Figure 11. The yield of 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene was 66%. The FT-IR, 1H-NMR and 
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13C-NMR spectra are shown in Figures 12, 13 and 14, respectively. The FT-IR spectrum 

showed peaks at 3092 cm-1 for the =C-H stretching, 3000 cm-1 for the aromatic C-H 

stretching, 2910 cm-1 for the aliphatic C-H stretching and 1670 cm-1 for the C=C stretching 

In the 1H-NMR spectrum, signals were observed at 7.2 ppm and 6.9 ppm for the phenyl 

protons, 5.2 ppm and 4.7 ppm for the vinylidene protons, 4.4 ppm, 4.3 ppm and 4.32 ppm 

for the ferrocenyl protons, 4.15 ppm  for the benzyl proton, and 3.18 ppm for methoxy 

protons, and 2.51-2.6 ppm for methylene protons. The types of C atoms in the 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5 dimethylene were recognized by 13C-NMR 

spectrum which showed signals at 158.1 ppm, 139.5 ppm, 127.7 ppm and 113.8 ppm for  

aromatic carbons, 140 ppm and 108.7 ppm for  vinylidene carbons, 85.3 ppm for the 

substituted carbons of the CP rings, 70.8 ppm, 68 ppm, 69.2 ppm and 64.2 ppm for the 

unsubstituted ferrocenyl carbons, 54.7 ppm for the methoxy carbon, 43.9 for the methine 

carbon and  38.5 ppm for methylene  carbons.  
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Figure 11: Synthesis of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-dimethylene 
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Figure 12: FT-IR spectrum for 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-

dimethylene 

 

 

Figure 13: 1H-NMR spectrum for 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-

dimethylene 
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Figure 14: 13C-NMR spectrum for 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-

dimethylene 

 

3.2 Homopolymerization and Copolymerization of 3-(4-methoxyphenyl) 

[5]ferrocenophane-1,5-dimethylene with N-Phenylmaleimide and Styrene 

 

3.2.1 Synthesis and Characterization of homopolymer of 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene 

            The monomer was homopolymerized (Homo) using AIBN as a free radical initiator 

as shown in Figure 15. The homopolymer was recovered in a 98% yield. The 

characterization of this polymer was done using FT-IR, 1H-NMR and 13C-NMR 

spectroscopy shown in Figures 16, 17 and 18 respectively. The FT-IR spectrum showed 

peaks at 3000 cm-1 for the aromatic C-H stretching, 2900 cm-1 for aliphatic C-H stretching. 

The absence of band near 1670 cm-1 corresponding to C=C was absent, suggesting that 
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residual monomer has either been reacted or removed during precipitation. Signals were 

observed at 6.54-7.26 ppm for phenyl protons, 4.34 ppm for ferrocenyl and benzyl proton, 

3.80 ppm for methoxy protons, and 0.8-2.1 ppm for aliphatic protons. The absence of 

vinylidene proton signals at 4.74 and 5.20 was consistent with the FTIR spectrum and 

indicated the absence of residual monomer. The 13C-NMR showed more peaks than 

expected because of the possibility of more than one conformation or due to different 

orientations of monomer addition. The homopolymer showed a Mw of 5,751, Mn of 3,034 

and a polydispersity of 1.8. Polydispersity was greater than 1 and is typical of a radical 

polymerization. 

 

Figure 15: Homopolymerization of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-

dimethylene 

 

 

Figure 16: FT-IR of homopolymer of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-

dimethylene 
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Figure 17: 1H-NMR spectrum of homopolymer of 3-(4-methoxyphenyl)[5] 

ferrocenophane-1,5-dimethylene 

 

 

Figure 18: 13C-NMR spectrum of homopolymer of 3-(4-methoxyphenyl)[5] 

ferrocenophane-1,5-dimethylene 
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3.2.2 Synthesis and characterization of copolymer of 3-(4-methoxyphenyl)[5] 

ferrocenophane-1,5-dimethylene with N-Phenylmaleimide 

             The ferrocenophane monomer was copolymerized with N-phenylmaleimide (Ph-

Ml) using AIBN as a free radical initiator shown in Figure 19. The copolymer was 

recovered in a 92% yield. The characterization of this polymer was done using FT-IR, 1H-

NMR and 13C-NMR spectroscopy shown in Figures 20, 21 and 22, respectively. The FT-

IR spectrum showed peaks at 3000 cm-1 for aromatic C-H stretching, 2900 cm-1 for 

aliphatic C-H stretching and 1700 cm-1 for carbonyl stretching. The 1H-NMR spectrum 

exhibited signals at 6.54-7.27 ppm for phenyl protons, 4.0-4.8 for ferrocenyl protons, 3.8 

ppm for methoxy protons and 1.0-2.1 ppm for aliphatic protons. The absence of vinylidene 

proton signals at 4.74 and 5.20 indicated the absence of residual monomer. The 13C-NMR 

showed more peaks than expected because of the possibility of more than one conformation 

or due to different orientations of the monomer upon addition. The N-phenylmaleimide 

copolymer showed a Mw of 6,062 , Mn of 1,833 and a polydispersity of 3.3.  
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Figure 19: Copolymerization of 3-(4-methoxyphenyl)[5] ferrocenophane-1,5-

dimethylene with N-phenylmaleimide 
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Figure 20: FT-IR Spectrum of copolymer of 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene with N-phenylmaleimide 

 

Figure 21: 1H-NMR spectrum of copolymer of 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene with N-phenylmaleimide 
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Figure 22: 13C-NMR spectrum of copolymer of 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene with N-phenylmaleimide 

 

3.2.3 Synthesis and Characterization of copolymer of 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene with Styrene. 

             The ferrocenophane monomer was copolymerized with styrene (St) using AIBN 

as a free radical initiator as shown in Figure 23. The copolymer was recovered in a 93% 

yield. The characterization of this polymer was done using FT-IR, 1H-NMR and 13C-NMR 

spectroscopy shown in Figures 24, 25 and 26, respectively. The FT-IR spectrum showed 

peaks at 3000 cm-1 for aromatic C-H stretching and 2900 cm-1 for aliphatic C-H stretching. 

The 1H-NMR spectrum of the copolymer is shown in Figure 24. Signals were observed at 

6.54-7.27 ppm for phenyl protons, 4.0-4.8 ppm for ferrocenyl protons, 3.8 ppm for 

methoxy protons and 2.1 ppm for aliphatic protons. The absence of vinylidene proton 

signals at 4.74 and 5.20 indicated the absence of residual monomer. The 13C-NMR 

spectrum showed more peaks than expected as was observed for the previous polymers. 

The styrene copolymer showed a Mw of 10,740 , Mn of 9,000 and a polydispersity of 1.1.  
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Figure 23: Copolymerization of 3-(4-methoxyphenyl)[5]ferrocenophane-1,5-

dimethylene with Styrene 

 

 

Figure 24: FT-IR spectrum of copolymer of 3-(4-methoxyphenyl)[5]ferrocenophane-

1,5-dimethylene with Styrene 
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Figure 25: 1H-NMR spectrum of copolymer of 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene with Styrene 

  

 

Figure 26: 13C-NMR spectrum of copolymer of 3-(4-

methoxyphenyl)[5]ferrocenophane-1,5-dimethylene with Styrene  

 

3.3 Thermogravimetric Analysis of Polymers 

           Thermogravimetric analysis was carried out at temperatures ranging from room 

temperature to 800C. Thermal stability was measured at the onset of decomposition 

temperature and char yield was determined at 800C. In the TGA of Homopolymer there 
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is a loss of weight around 100C as shown in the TGA and derivative plot in Figure 27 

since the polymer was stored on the bench top prior to TGA, this loss of weight was likely 

due to absorption of moisture by the polymer. The homopolymer showed thermostability 

to 387C. Copolymers with N-phenylmaleimide and styrene showed thermostabilities of 

349C and 360C respectively. Thermal stabilities depend on the structure of the polymer. 

The homopolymer showed highest degradation temperature amongst all because of its cage 

like structure.[26] The observed char yields for homopolymer, N-phenylmaleimide and 

styrene copolymer were 20.1, 11 and 2.5 respectively. As observed for thermal stability, 

the cage like structure of the homopolymer increased char yield 

 

 

 

 
 

Figure 27: TGA and Derivative plot of Homo polymer  
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3.4 Electrochemical Studies of Polymers 

3.4.1 Electrochemical Studies of polymers in CH2Cl2  

         Polymer solutions for electrochemistry were prepared in dichloromethane (5 mg/mL) 

using 0.1M tetrabutylammonium hexafluorophosphate (Bu4NPF6), tetrabutylammonium 

perchlorate (Bu4NClO4) or tetrabutylammonium triflate as the supporting electrolyte. The 

cyclic voltammetry was performed in the range of 0.0 V to 0.80 V, with scan rates of 20, 

40, 60, 80 and 100 mV/s. The redox potentials of each polymer with each salt are shown 

in Tables 1, 2 and 3. Initial electrochemical studies on these materials revealed one 

oxidation potential for each polymer. The CVs of the homopolymer with Bu4NPF6 as the 

supporting electrolyte is shown in Figure 28 and similar results were observed with each 

polymer and electrolyte combination.  Cyclic voltammograms of the homopolymer showed 

the oxidation potentials (E1/2) of 0.45, 0.44, 0.54 using Bu4NPF6, Bu4NClO4, or Bu4NOTf, 

respectively. The cyclic voltammograms of homopolymer showed approximately equal Ipc 

and Ipa for each supporting electrolyte, suggesting that these polymers are chemically 

reversible.  However, Eox – Ered was greater than 60 mV indicating a lack of electrochemical 

reversibility. In addition, the current scaled linearly with the square root of the scan rate 

indicating that the polymer remained soluble in both neutral and oxidized states, shown in 

Figure 29. Copolymers with maleimide showed similar E1/2 potentials to the homopolymer 

but the copolymer with styrene exhibited lower E1/2 potentials by ca. 0.1-0.15 V.  An 

increase in E1/2 using maleimide has been observed in previous research.[27] Since this 

copolymer was expected to be alternating, electron interactions occur between the electron-

rich ferrocene and the electron-deficient of maleimide.  A higher than expected E1/2 of the 

homopolymer may suggest a step-wise oxidation of the polymer as shown in Figure 30. As 
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one ferrocene moiety was oxidized to a ferrocenium ion, electronic interaction occurred 

between the ferrocenium ion with neighboring ferrocenyl groups. This interaction would 

result in an overall increase in E1/2 and a significant difference in Eox and Ered since various 

conformations within the polymer would result in different degrees of electronic 

communication.  For the styrene copolymer, a lower E1/2 would be consistent with isolation 

of the ferrocene moieties since this was expected to be a random copolymer.  For the 

copolymers, the difference in Eox and Ered were somewhat lower than the homopolymer but 

were consistent with chemical reversibility but not electrochemical reversibility. 

 

Table 1: Redox Potentials of Polymers in Tetrabutylammonium 

Hexafluorophosphate at 100 mV/s 

Polymer  Salt Eox Ered E1/2 Eox - Ered  (mV) 

Homo Bu4NPF6 0.54 0.36 0.45 180 

Ph-ML Bu4NPF6 0.51 0.38 0.44 130 

St Bu4NPF6 0.38 0.24 0.31 140 

 

Table 2: Redox Potentials of Polymers in Tetrabutylammonium Perchlorate at        

100 mV/s 

Polymer Salt Eox Ered E1/2 Eox - Ered  (mV) 

Homo Bu4NClO4 0.52 0.37 0.44 150 

Ph-ML Bu4NClO4 0.53 0.44 0.48 90 

St Bu4NClO4 0.37 0.24 0.30 130 
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Table 3: Redox Potentials of Polymers in Tetrabutylammonium Triflate at 100 mV/s 

Polymer Salt Eox Ered E1/2 Eox - Ered  (mV) 

Homo Bu4NOTf 0.62 0.47 0.54 150 

Ph-ML Bu4NOTf 0.60 0.52 0.56 80 

St Bu4NOTf 0.55 0.39 0.47 160 

                                 

  

 

Figure 28: CV of Homopolymer in CH2Cl2 with Bu4NPF6 as supporting electrolyte. 

 

 

 

 

Figure 29: Current versus Scan Rate½ for CVs of Homopolymer with Bu4NPF6 as 

supporting electrolyte. 
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Figure 30: Oxidation Mechanism of Homopolymer 

 

3.4.2 Electrochemical Studies of Polymer Thin Films in 0.1 M NaCl or NaClO4 

Solutions. 

            Thin films of polymers were casted on the platinum electrodes from 

dichloromethane solutions and then air dried.  Cyclic voltammetry was conducted in 

aqueous solutions of sodium perchlorate (0.1 M, NaClO4) or sodium chloride (0.1 M, 

NaCl) as a supporting electrolyte. CV using NaClO4 as the electrolyte showed poor redox 

waves, suggesting poor ion transport into the film and could be due to poor hydration of 

the polymer as shown in Figure 31. The redox potentials of polymers using sodium chloride 

as a supporting electrolyte are shown in Table 4. The cyclic voltammograms showed 

greater Ipc than Ipa as shown in Figure 32 for homopolymer suggesting slow ion transfer 
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into the film and similar results were observed for styrene. The phenylmaleimide 

copolymer showed very poor redox waves in the CV suggesting poor ion movement into 

and out of the polymer. 

 

Table 4: Redox Potentials of Polymers Thin film in aqueous solutions at 100mV/s 

Polymer Electrolyte EOX (V) Ered  (V) E1/2  (V) 

HOMO NaCl 0.09 -0.18 -0.045 

Ph-Ml NaCl 0.49 -0.11 0.19 

St NaCl 0.11 -0.18 -0.035 

 

 

 

Figure 31: Cyclic Voltammetry (20 mV/S) of Homopolymer in 0.1M Aqueous 

NaClO4 Solution  
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Figure 32: Cyclic Voltammetry of Homopolymer Thin Films in 0.1 M Aqueous NaCl 

Solution 

 

3.5 UV-vis absorption studies of Copolymers 

                UV-vis spectroscopy is important for investigating electronic transitions of 

chromophores.  Polymer solutions were prepared in chloroform (10 mg/mL) and were 

tested from 250-800 nm. The UV-Vis spectra of each polymer exhibited an absorbance at 

ca. 440 nm for the ferrocenyl moiety as shown in Figure 33. Ferrocenophanes are known 

to show a shift in their absorbency that is dependent on the length of the bridge, as shown 

in Table 5.[27] An absorbance of 440 nm was consistent with the formation of a 

[3]ferrocenophane during polymerization as expected for the cyclopolymerization. 
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Figure 33: UV-vis spectrum of polymers 

 

Table 5: UV data for Various Ferrocenophanes[19] 

Compound max (nm) 

1,1-dimethylferrocene 437 

[2]ferrocenophane 472 

[3]ferrocenophane 442 

[4]ferrocenophane 433 

[5]ferrocenophane 448 
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CHAPTER IV 

 
 

4. CONCLUSIONS 

 
 

4.1 Summary of results  

            A novel ferrocenophane diene monomer has been synthesized and free radically 

polymerized. Homopolymerization, as well as, copolymerization with styrene or N-

phenylmaeimide was accomplished by free radical initiation in yields ranging from 92-

98%.   Characterization by 1H-NMR, 13C-NMR, and FTIR spectroscopy was consistent 

with the polymer or copolymer structures.  

 TGA data showed thermostability of the polymers ranging from 349 to 387C.  

Cyclic voltammetry of polymers in CH2Cl2 gave a single redox wave and a linear relation 

between current vs. scan rate1/2. However, the homopolymer showed a large difference 

between Eox and Ered, suggesting various conformations within the polymer backbone 

causing different degrees of interaction between neighboring ferrocenyl moieties. CVs of 

thin films revealed polymers to be chemically reversible with slow ion transport within the 

film.  In addition, UV-Vis spectra exhibited an absorbance at ca. 440 which was consistent 

with the formation of a [3]ferrocenophane during polymerization. 
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4.2 Future Research   

         Subsequent research with these materials should focus on further characterization.  

From the large separation in Eox and Ered in the homopolymer, it was surmised that there 

were various degrees of electronic interactions between neighboring ferrocenyl moieties.  

This could be characterized by studying partially oxidized samples of the polymer by UV-

Vis-Near IR spectroscopy.  An absorbance in the Vis-Near IR region would confirm these 

electronic interactions.  Also, further electrochemical studies on thin films of these 

materials should be conducted.  CV versus thickness of the film should be studied to 

determine if ion transport improves as film thickness decreases and better defined CV scans 

can be obtained. 
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Figure S1: CV of homopolymer in CH2Cl2 with Bu4NClO4 as a supporting 

electrolyte. 

 

 

 
Figure S2: CV of homopolymer in CH2Cl2 with Bu4NOTf as a supporting 

electrolyte. 

 

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Fcp-Homo-Tf 100mV/s
Fcp-Homo-Tf 80mV/s
Fcp-Homo-Tf 60mV/s
Fcp-Homo-Tf 40mV/s
Fcp-Homo-Tf 20mV/s

Potential (V)

C
u
rr

en
t 

𝜇
𝐴



42 
 

 
Figure S3: CV of N-Phenylmaleimide copolymer in CH2Cl2 with Bu4NPF6 as a 

supporting electrolyte. 

 

 

 
Figure S4: CV of Maleimide polymer in CH2Cl2 with Bu4NClO4 as a supporting 

electrolyte. 
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Figure S5: CV of Maleimide polymer in CH2Cl2 with Bu4NOTf as a supporting 

electrolyte. 

 

 

 
Figure S6: CV of Styrene polymer in CH2Cl2 with Bu4NPF6 as a supporting 

electrolyte. 
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Figure S7: CV of Styrene polymer in CH2Cl2 with Bu4NClO4 as a supporting 

electrolyte. 

 

 

Figure S8: CV of Styrene polymer in CH2Cl2 with Bu4NOTf as a supporting 

electrolyte. 
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Figure S9: Current versus Scan Rate½ for CVs of Homopolymer with Bu4NClO4 as 

supporting electrolyte. 

 

 

Figure S10: Current versus Scan Rate½ for CVs of Homopolymer with Bu4NOTf as 

supporting electrolyte. 
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Figure S11: Current versus Scan Rate½ for CVs of Maleimide copolymer with 

Bu4NPF6 as supporting electrolyte. 

 

 

Figure S12: Current versus Scan Rate½ for CVs of Maleimide copolymer with 

Bu4NClO4 as supporting electrolyte. 
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Figure S13: Current versus Scan Rate½ for CVs of Maleimide copolymer with 

Bu4NOTf as supporting electrolyte. 

 

 

Figure S14: Current versus Scan Rate½ for CVs of Styrene copolymer with Bu4NPF6 

as supporting electrolyte. 
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Figure S15: Current versus Scan Rate½ for CVs of Styrene copolymer with 

Bu4NClO4 as supporting electrolyte. 

 

 

Figure S16: Current versus Scan Rate½ for CVs of Styrene copolymer with 

Bu4NOTf as supporting electrolyte. 
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Figure S17: Cyclic Voltammetry of Maleimide copolymer Thin Films in 0.1M 

Aqueous NaCl Solution 

 

 
Figure S18: Cyclic Voltammetry of Styrene copolymer Thin Films in 0.1M Aqueous 

NaCl Solution 
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Figure S19: TGA and Derivative plot of Ph-Ml polymer  

 

 

 

 

 

 
Figure S20: TGA and Derivative plot of Co-St polymer 
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