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An Abstract of the Thesis by 

Kali Lynn Boroughs 

 

 

Water pollution imperils the Neosho Madtom (Noturus placidus), which is 

threatened in Kansas and federally.  Within Kansas madtom densities were historically 

lower in the Spring River compared to the Cottonwood and Neosho Rivers, especially 

within the Spring River below tributary inputs that delivered cadmium, lead, and zinc 

pollution from the Tri-State Mining District.  Studies suggest that madtoms are less 

numerous in waters containing elevated metal concentrations because of direct toxicity 

and lower benthic macroinvertebrate availability, which is also depressed by elevated 

metal concentrations.  However, long-term reductions in metal concentrations in the 

Spring River have occurred, but to date no study has examined whether madtom and 

macroinvertebrate densities have responded to this improving water quality.  We 

addressed this question by comparing madtom densities and macroinvertebrate biomass 

between the Neosho-Cottonwood and Spring Rivers, and within the Spring River above 

and below metal pollution inputs.  However, madtoms are imperiled by environmental 

factors and anthropogenic stressors beyond mining-derived metal pollution, so we also 

examined if food availability (i.e., macroinvertebrate biomass), watershed characteristics 

(i.e., the upstream proximity of small and large dams, upstream watershed area, and 

percent open water in the upstream watershed), and local habitat variables (i.e., turbidity, 

depth, velocity, and percent gravel/pebble substrate) were related to madtom densities.  
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We found that madtom and macroinvertebrate population densities in the Spring River 

were similar to those of the Neosho-Cottonwood River system, and densities in the 

Spring River downstream of mining-impacted tributaries were similar to those upstream 

of pollution.  Furthermore, macroinvertebrate availability and watershed characteristics 

were not associated with madtom abundance.  However, turbidity and depth were 

associated with madtom densities, such that an increase in turbidity or decrease in depth 

resulted in higher madtom densities.  Our results highlight the benefits that water quality 

improvements can have on stream organisms, especially those that are imperiled. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Heavy metals are a threat to fish and macroinvertebrate communities in lotic 

ecosystems globally (Wildhaber et al. 2000a; Courtney and Clements 2002; Iwasaki et al. 

2009).  Heavy metals enter flowing waterbodies via mining and industrial activities, 

municipal sewage effluent, and urban runoff (Malmqvist and Rundle 2002; Iwasaki et al. 

2009).  Once in the water, heavy metals can enter a fish directly through the gills and 

integument (Dallinger et al. 1987; Vinodhini and Narayanan 2008; Afshan et al. 2014), or 

indirectly via biotransference from contaminated diet items (e.g., macroinvertebrates, 

smaller fish, aquatic vegetation; Dallinger et al. 1987; Maret et al. 2003; Afshan et al. 

2014).  Toxic metals, such as lead (Pb), zinc (Zn), and cadmium (Cd) can reduce fish 

diversity and density (Wildhaber et al. 2000a; Maret et al. 2003; Afshan et al. 2014; 

Authman et al. 2015) by having deleterious effects on physiology, interfering with 

reproduction, and altering behavior (Wildhaber et al. 2000a; Authman et al. 2015).  

Finally, metal pollution can also harm fish indirectly via reduced food availability 

(Dallinger et al. 1987; Wildhaber et al. 2000a; Campbell et al. 2003; Kövecses et al. 

2005; Landers 2016), as streams with elevated metal concentrations have lower 

macroinvertebrate abundance and diversity via the loss of sensitive species (Courtney and 
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Clements 2002; Maret et al. 2003; Qu et al. 2010).  Macroinvertebrates are an important 

food source for fish, thus, a decrease in benthic macroinvertebrate density and biomass 

could have significant implications in food availability for benthic fish assemblages 

(Wildhaber et al. 2000a; Campbell et al. 2003; Kövecses et al. 2005; Mebane et al. 2015; 

Landers 2016).  

The Neosho Madtom (Noturus placidus, Taylor 1969), is a small (< 75 mm total 

length) North American freshwater catfish that was listed as threatened under the 

Endangered Species Act (1973) in 1990, and has been a threatened species in Kansas 

since 1987 (Wilkinson and Fuselier 1997; Wildhaber et al. 2000a; Kansas Fishes 

Committee 2014).  This species is native to the Illinois River in Oklahoma, the Neosho 

River (Kansas & Oklahoma), the Cottonwood River (Kansas), and the Spring River 

(Kansas, Oklahoma, and Missouri), where it inhabits riffles and bar habitats with loose 

pebble and gravel substrate, moderate to high water velocities, and relatively shallow 

depths (Ernsting et al. 1989; Wilkinson et al. 1996; Wilkinson and Fuselier 1997; 

Wildhaber et al. 2000a; Allen et al. 2001; Kansas Fishes Committee 2014).  Neosho 

Madtoms are nocturnal predators that feed on immature benthic macroinvertebrates, such 

as caddisflies, mayflies, and midges (Allen et al. 2001; Kansas Fishes Committee 2014).   

Historically, within Kansas the density of Neosho Madtoms was lower in the 

Spring River compared to the Cottonwood and Neosho Rivers (Wilkinson et al. 1996; 

Wildhaber et al. 1999a; 2000a).  This pattern was observed in surveys conducted in the 

early 1990’s that examined natural and anthropogenic factors limiting Neosho Madtom 

and other riffle-dwelling benthic fishes in the Spring River (Wildhaber et al 2000a).  One 

proposed reason for the lower Neosho Madtom density was elevated concentrations of 
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toxic metals in the Spring River compared to the Neosho-Cottonwood system (Wildhaber 

et al. 1999a; 2000a).  Metal pollution in the Spring River was the consequence of metal 

inputs from the Tri-State Mining District, where extensive mining for Pb and Zn occurred 

during the mid-1800s through the 1950s (Barks 1986; Wildhaber et al. 1999b; 2000a; 

Brumbaugh et al. 2005).  These metal inputs were derived from several of the Spring 

River’s major tributaries, including Center Creek, Turkey Creek, and Shoal Creek (Figure 

1).  Furthermore, within the Spring River, Neosho Madtom densities below the first 

major input of metal pollution (i.e., Center Creek) were much lower than in the Spring 

River above this tributary (Wildhaber et al. 2000a).  Previous studies suggested that 

Neosho Madtoms are less numerous in waters containing elevated Pb, Zn, and Cd 

concentrations because of direct toxicity and lower benthic macroinvertebrate availability 

(Wildhaber et al. 2000a; USFWS 2013).  

A long-term reduction in Cd, Pb, and Zn concentrations in the Spring River and 

its tributaries has occurred since the 1990s which was revealed through the water quality 

monitoring program conducted by the Kansas Department of Health and Environment 

(KDHE) (Figure 2).  However, even though metal concentrations have decreased, certain 

segments of the Spring River in Kansas are still listed under section 303(d) of the Clean 

Water Act (1972) (e.g., below Center Creek) (KDHE 2020).  Improvements to water 

quality may not yet be substantial enough to elicit a response from Neosho Madtom and 

benthic macroinvertebrates, but the response of these stream organisms to improving 

water quality is presently unknown.  

Abiotic habitat factors and anthropogenic stressors beyond mining-impaired 

watersheds and their resultant degradation of water quality may influence Neosho 
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Madtom densities.  For instance, dams exert control over Neosho Madtom distribution 

and abundance by altering processes from regional to local scales.  Large dams (i.e., >15 

m in height; Poff and Hart 2002) negatively affect Neosho Madtom populations by 

fragmenting populations, creating lentic conditions upstream, and by altering habitat and 

natural flow regimes downstream from dams (Wildhaber et al. 2000b).  For instance, 

extended bankfull flows released from large dams during the spawning season decreases 

the reproductive success of Neosho Madtoms (Kansas Fishes Committee 2014).  These 

regional-scale modifications occurring from dams can alter local physicochemical 

conditions, as river segments downstream from dams have coarser substrate with greater 

embeddedness, greater water clarity, and altered depth and velocity (Wildhaber et al. 

2000b; Tiemann et al. 2004).  Madtoms are also negatively affected by small (i.e., <15m 

height), low-head dams that have similar negative effects as large dams, although the 

extent and magnitude of their impacts is lesser, and they do not alter the natural flow 

regime (Tiemann et al. 2004).   

It is currently unknown whether Neosho Madtom and macroinvertebrate  

abundances in the Spring River have responded to decreasing metal concentrations, thus 

our first objectives were to compare contemporary 1) Neosho Madtom and 2) 

macroinvertebrate abundances among the Spring River above metal pollution, the Spring 

River below metal pollution, and the Neosho-Cottonwood River system.  We predicted 

that Neosho Madtom and macroinvertebrate abundances would be similar among our 

three stream systems because of rebounding abundances in the lower Spring River that 

were the consequence of long-term water quality improvements.  We emphasize that our 

investigation concerning responses to long-term water quality improvements examines 
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whether or not a pattern that was present in the 1990s (i.e., depressed Neosho Madtom 

and macroinvertebrate abundance in the lower Spring River) still existed in 2019-2020 

rather than looking directly at temporal trends in abundances, as long-term abundance 

data is not available.  Furthermore, we do not directly compare our abundance estimates 

to those from the 1990s, as differences in sampling efficiency and methodology between 

time periods made direct abundance comparisons difficult.  Regardless, we reasoned that 

if Neosho Madtom and macroinvertebrate abundances in the lower Spring River were 

now similar to the other two systems, that result would provide evidence for a positive 

biotic response to the long-term reduction of metal concentrations.  Our final objective 

was to determine what environmental variables could best explain contemporary spatial 

variation in Neosho Madtom densities, which we assessed by comparing models that 

included invertebrate food availability, local physicochemical conditions, and upstream 

watershed characteristics as explanatory variables.  We predicted that Neosho Madtom 

abundances would be positively associated with food availability but would be negatively 

affected by factors related to large and small dams.  Our research will provide further 

information on the environmental factors influencing the prevalence of a federally-

threatened fish species, while also yielding more general insights concerning the response 

of stream organisms to long-term reductions in water pollution.  

METHODS 

Study Area 

Our study streams included the Cottonwood, Neosho, and Spring Rivers, as well 

as Lightning Creek, a major tributary of the Neosho River (Figure 1; Figure 3).  All study 

streams were located within the Neosho River basin, which corresponds to a U.S. 
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Geological Survey level-6 hydrologic unit code (HUC-6 = 110702).  We selected 10 sites 

each in the Spring and Neosho-Cottonwood River systems, for a total of 20 sites.  Within 

the Spring River, five sites were located above and five below tributary inputs with 

elevated Cd, Pb, and Zn concentrations (Figures 1 and 2; Table 1).  Site selection was 

based primarily on the presence of preferred Neosho Madtom habitat (i.e., riffles and 

gravel bars), followed by accessibility and our ability to obtain sampling permission.  We 

used Google EarthTM to identify locations with preferred habitat.  All sampling was 

conducted during June 2019 – August 2020, with 2019 and 2020 treated as separate 

sample years.      

Fish Sampling 

Fish sampling was conducted at each site once each year between late summer 

and early fall (i.e., two total samples per site).  However, in 2019 severe flooding and 

extended high flows prevented us from conducting fish surveys at our two lower Spring 

River sites.  Fish sampling using kick-seining (4.6 m x 1.8 m seine with 3.2 mm mesh) 

took place in riffle and moderate to low-velocity gravel bar habitats.  Kick-seining was 

conducted by one or two individuals thoroughly disturbing the substrate beginning four 

meters upstream from a stationary seine and then kicking in a downstream direction to 

the seine’s leadline.  As such, each kick-seining effort yielded an 18.4 m2 sample area 

(i.e., 4 m kicking length X 4.6 m seine width = 18.4 m2).  Kick-seining started at the 

downstream end of a habitat and proceeded laterally and then upstream with multiple 

kick-seine efforts until all habitat less than one meter deep at a site had been sampled.  

All fishes captured were identified to species, measured for total length (TL) to the 

nearest millimeter, counted, and then returned to the stream.   
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Overall Neosho Madtom densities at each site were calculated by dividing the 

total number of Neosho Madtoms captured by the total area sampled via kick-seining.  

We also calculated adult Neosho Madtom densities separately to address if young of year 

(YOY) individuals were influencing our results, as variation in sample timing between 

years impacted the number of YOY individuals captured at some sites.  Using length-

frequency histograms we determined adults were individuals >35 mm TL in July, >40 

mm TL in August, >45 mm TL in September, and >50mm TL in October and November.   

Benthic Macroinvertebrate Sampling 

Benthic macroinvertebrate samples were collected at sites twice between late 

spring through fall during each sample year (i.e., four total sampling occasions per site).  

We sampled macroinvertebrates twice each year to help account for the high degree of 

intra-annual variability that is typical of aquatic macroinvertebrate communities 

(O’Connor 2010; Nava et al. 2015).  A modified-Hess sampler (0.086 m2 sample area, 

363 μm mesh collection bag) was used to collect six replicate benthic invertebrate 

samples at most sample sites during each sampling occasion, although only three 

replicates were collected at two of our smaller sites.  In the Neosho-Cottonwood River 

system we collected 108 replicate macroinvertebrate samples in 2019 and 120 samples in 

2020, while in the Spring River we collected 99 and 117 replicates in 2019 and 2020, 

respectively.  Fewer replicates were collected in 2019 compared to 2020 in both systems 

because high flows prevented us from collecting some samples.  When benthic 

macroinvertebrate and fish sampling coincided at a sample site, benthic 

macroinvertebrate samples were collected prior to fish sampling so that substrates were 

not disturbed prior to macroinvertebrate collections.  Within the Hess sampler, substrate 
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down to a depth of five centimeters was disturbed for approximately two minutes to 

dislodge any macroinvertebrates into the collection net.  Benthic invertebrate samples 

were preserved in 10% formalin and taken back to the lab.   

Individuals were identified to family for insects (Merritt et al. 2008) and class or 

order for non-insect taxa (Huggins et al. 1985), measured for total length to the nearest 

mm using one mm square grid paper, and counted.  Published length-mass relationships 

(Benke et al. 1999) were used to estimate benthic macroinvertebrate biomass, which was 

expressed as grams of dry mass (DM) per m2.  However, prior to density and biomass 

calculations we removed any non-bivalve invertebrate that had a length greater than ten 

millimeters and any bivalve with a length or height greater than five millimeters.  We 

excluded large invertebrates from density and biomass calculations because we wanted to 

focus on macroinvertebrates that were available for consumption, thus providing a more 

accurate estimate of food availability.   

Environmental Factors 

We collected data describing local physicochemical conditions and upstream 

watershed characteristics at each sampling location.  Prior to any macroinvertebrate or 

fish sampling, we used an empty 125 ml plastic bottle to collect a water sample, which 

was taken back to the lab and analyzed using a 2100P turbidimeter to calculate turbidity 

in nephelometric turbidity units (NTUs).  To quantify physical habitat, three to thirteen 

transects were positioned per site, depending on site length.  Along each transect, we 

quantified depth (m), water velocity (m/s), and substrate at five equally spaced points, for 

a total of 10-65 measurements per sample habitat.  We used a Hach top-setting wading 

rod to measure depth and a Hach FH950 portable flow meter to measure water velocity.  
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Substrate classifications were based on a modified-Wentworth scale, including (from 

smallest to largest) clay, silt, sand, gravel, pebble, cobble, boulder, and bedrock 

(Cummins 1962).  Upstream watershed characteristics included percent open water, 

distance to the nearest large dam (km), distance to nearest small dam (km), and watershed 

area (km2).  All open waterbodies in our study area are artificially-created by human 

activity (mostly impoundment; some excavation), thus percent open water helped us 

further quantify the upstream influence of dams on study sites (Stene 1946; Arruda and 

Fromm 1989).  We calculated upstream watershed area to estimate stream size, which is 

an important predictor of stream fish distributions for most species (Horwitz 1978; 

Jackson et al. 2001; Zorn et al. 2002; Troia and Gido 2014).  Percent open water and 

upstream watershed area were estimated using the StreamStats program for Kansas 

(USGS 2016), while upstream distances to large and small dams were measured using 

Google Earth.  The Neosho-Cottonwood River system has three large dams (i.e., Marion, 

Council Grove, and John Redmond Reservoirs) while the Spring River system has none 

(Figures 1 and 3).  Both systems have numerous small dams, although small dams are 

more prevalent in the Neosho-Cottonwood compared to the Spring River system 

(Tiemann et al. 2004; Kansas Fishes Committee 2014). 

Data Analyses  

We used analysis of variance (ANOVA) to compare total and adult Neosho 

Madtom densities as well as macroinvertebrate density and biomass among the Neosho-

Cottonwood River, Spring River upstream of pollution, and Spring River downstream of 

pollution.  Densities (i.e., madtom and macroinvertebrate) and macroinvertebrate biomass 

were square root transformed to help data conform to the normality and homoscedasticity 
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assumptions.  To perform our analyses, we began by constructing linear models (LMs) 

using the lm function from the R base package (R Core Team 2020), followed by 

conducting an ANOVA on the LM using the Anova function from the car package (Fox 

and Weisberg 2019).  If a significant effect (i.e., α = 0.05) was found, we used Tukey’s 

honest significant difference (HSD) to determine which categories significantly differed 

from one another.  We predicted that we would fail to reject the null hypothesis of no 

difference in abundances among our three stream categories.  

We had three competing models concerning the factors that could explain spatial 

variation in either total or adult contemporary Neosho Madtom density, including 1) food 

availability, 2) local physicochemical habitat conditions, and 3) upstream watershed 

characteristics.  We used macroinvertebrate biomass as the lone predictor variable for the 

food availability model, while turbidity, mean depth, mean water velocity, and percent 

gravel-pebble substrate served as predictor variables for the local habitat model.  Finally, 

percent open water in the upstream watershed, upstream watershed area, and the inverse 

of the distances to nearest large and small dams multiplied by 1,000 were used as 

predictor variables for the upstream watershed characteristics model.  We took the 

inverse of distances to nearest dams such that 0 = no upstream dams and larger numbers 

equated to greater dam proximity and presumably greater effects of a dam on a sample 

site.  We multiplied inverse distance to dams by 1,000 so that numbers were not small 

decimals.  We reasoned that both of these changes to dam distance would facilitate model 

interpretation.  Prior to modeling we scaled variables between 0-1 for models that 

included multiple predictors.  Furthermore, since models 2 and 3 had multiple predictor 

variables, we used multiple linear regression coupled with stepwise variable selection to 
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determine if we could reduce the number of predictor variables within a model prior to 

comparison among the three models.  We compared our three competing models as well 

as an intercept-only null model using adjusted R2 and Akaike’s Information Criterion 

corrected for small sample size (AICc).   

RESULTS 

Madtom and Macroinvertebrate Abundance Comparisons 

In total we found 607 Neosho Madtoms across the Neosho-Cottonwood and 

Spring River systems during 2019-2020.  During 2019 we captured 129 Neosho 

Madtoms, with 103 (80%) of those coming from 8/10 sample sites in the Cottonwood and 

Neosho Rivers (Figures 3 and 4).  In the Spring River during 2019, we only found 26 

Neosho Madtoms at 4/8 sample sites, which were all upstream of metal pollution (Figures 

1 and 4).  In 2020, we captured 478 Neosho Madtoms, with 359 (75%) of those coming 

from 7/10 sample sites in the Cottonwood and Neosho Rivers (Figures 3 and 4) and 119 

individuals from 8/10 Spring River sites (Figures 1 and 4).  In the Spring River in 2020, 

86/119 (72%) madtoms occurred downstream of the first tributary input of metal 

pollution (i.e., Center Creek), although the two sites where we did not detect Neosho 

Madtom were downstream of metal inputs as well (Figure 1 and 4).  Furthermore, 73/86 

madtoms that were found downstream of metal pollution occurred at one site located just 

above the Willow Creek confluence, which we were unable to sample in 2019 because of 

high flows (Figure 1).   

In accordance with our predictions, there were no differences in Neosho Madtom 

and macroinvertebrate abundances among our three stream categories.  Specifically, total 

(F2,35 = 1.32; P = 0.28) and adult madtom densities (F2,35 = 1.05; P = 0.36) did not differ 
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among the Neosho-Cottonwood, Spring River above pollution inputs, and Spring River 

below pollution (Figure 4), and macroinvertebrate biomass (F2,37 = 3.25; P = 0.05) and 

density (F2,37 = 2.29; P = 0.12) did not differ among systems either (Figure 4).  

Explanatory Models of Neosho Madtom Density 

The local habitat model was the top model that could best explain spatial variation 

in total (R2 = 0.25; F2,35 = 7.07; P = 0.003) and adult (R2 = 0.30; F2,35 = 8.83; P = <0.001) 

Neosho Madtom densities, although it only included turbidity and depth as predictor 

variables following variable selection (Table 2).  An increase in turbidity (total madtom β 

= 0.54; adult madtom β = 0.39) or decrease in depth (total madtom β = -0.33; adult 

madtom β = -0.22) resulted in increasing madtom densities.  In contrast, there was no 

relationship between benthic macroinvertebrate biomass and total (r2 = -0.03; F1,36 = 

0.08; P = 0.78) or adult Neosho Madtom densities (r2 = -0.01; F1,36 = 0.47; P = 0.50; 

Table 2), and no watershed-scale variables were associated with total (adjusted R2 = 0.01 

; F4,33  = 1.11; P = 0.37) or adult madtom densities (adjusted R2 = 0.01 ; F4,33 = 1.08 ; P = 

0.38).  Both results defied our initial predictions concerning the influence of food 

availability and dams on Neosho Madtom density. 

DISCUSSION 

Historically, Neosho Madtom densities were lower in the Spring River compared 

to the Neosho-Cottonwood Rivers, especially in the Spring River below major tributary 

inputs of metal pollution (Wilkinson et al. 1996; Wildhaber et al. 1999a; 2000a).  

However, we found that Neosho Madtom densities throughout the Spring River were 

now comparable to the Neosho-Cottonwood system, even in the Spring River below 

tributaries with elevated metal concentrations.  We reasoned that the disappearance of the 
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historical pattern concerning depressed Neosho Madtom abundances in the Spring River 

was due to increasing abundances in the lower Spring River that resulted from long-term 

reductions in metal concentrations, rather than decreasing abundances in our other study 

systems.  We support this reasoning with several lines of evidence.  First, few madtoms 

were observed at a limited number of locations in the Spring River below metal pollution 

in the 1990s (Wilkinson et al. 1996; Wildhaber et al. 2000a ), whereas we observed 

numerous Neosho Madtoms across multiple sites in this reach, which included the site 

with the greatest density within the Spring River (Figure 1).  And although the two sites 

in the Spring River where we did not detect Neosho Madtom as part of this study were 

located below metal pollution, other studies have detected Neosho Madtoms at those sites 

during 2018-2020 (J. Whitney, personal communication).  As such, Neosho Madtom now 

occur throughout the entirety of the Spring River in Kansas, and achieve some of their 

highest densities in the reach below metal pollution, contrasting strongly with patterns 

observed in the 1990s (Wilkinson et al. 1996; Wildhaber et al. 2000a).  Furthermore, 

Neosho Madtom density remains relatively high in the Neosho-Cottonwood system 

(Figure 4), indicating that it is unlikely that reductions in density in this system over time 

would explain non-significant differences between the Neosho-Cottonwood and Spring 

Rivers.  All of these lines of evidence support our assertion that Neosho Madtom 

distribution and abundance in the Spring River have increased, with long-term water 

quality improvements being the most plausible explanation for this result.  As such, our 

results highlight the benefits that water quality improvements can have on stream 

organisms, especially those that are imperiled.   
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We found no differences in macroinvertebrate density or biomass between or 

within river systems, similar to our results for Neosho Madtom.  These patterns are also 

likely a consequence of long-term decreases in metal concentrations throughout the 

Spring River subbasin.  For instance, it is common for streams with elevated metal 

concentrations to exhibit reduced macroinvertebrate abundance compared to unpolluted 

streams (Clements et al. 2000; Courtney and Clements 2002; Maret et al. 2003; Qu et al. 

2010).  However, since we did not observe this pattern, this result suggested that metal 

pollution is no longer a major impairment to stream organisms in the lower Spring River.  

Furthermore, this result may explain why we found no evidence that macroinvertebrate 

availability was associated with madtom abundance.  Wildhaber et al. (2000a) suggested 

that one of the primary reasons for lower madtom densities in the Spring River impacted 

by metal pollution was lower macroinvertebrate availability that resulted in diet 

limitations for madtoms.  However, since at present there are no differences in food 

availability among systems, food availability may no longer be a limiting factor to 

contemporary Neosho Madtoms populations in Kansas.   

Many studies have examined the effects of elevated metal concentrations on fish 

and macroinvertebrates populations in streams, but very few have examined how fish and 

macroinvertebrates respond to decreases in metal concentrations over time.  However, the 

few studies that have been conducted have observed fish and macroinvertebrates 

responding positively to reductions in metal concentrations in streams, as would be 

expected.  For instance, Mebane et al. (2015) observed Rainbow Trout (Oncorhynchus 

mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) populations make a full 

recovery in four years after copper’s chronic criteria had been met in Panther Creek and 
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Big Deer Creek in Idaho, USA.  Furthermore, Panther Creek and Big Deer Creek also 

saw an increase in Shorthead Sculpin (Cottus confusus) distribution and density and 

benthic macroinvertebrate richness and biomass following decreases in copper 

concentration (Mebane et al. 2015).  In another study in Idaho, the South Fork and 

mainstem of the Coeur d’Alene River experienced an increase in benthic 

macroinvertebrate richness and species diversity with a decrease in heavy metal 

concentrations (Hoiland et al. 1994).  Lastly, benthic macroinvertebrate richness and 

biomass increased following a decline in zinc concentrations in the Ichi-kawa River of 

Japan (Watanabe et al. 2000).  Our findings were similar to results from these previous 

studies, in that the Spring River had lower madtom and macroinvertebrate abundances 

when metal concentrations were elevated, but abundances rebounded when metal 

concentrations decreased.  

Turbidity and depth were the only local habitat variables that were associated with 

madtom densities, such that increases in turbidity or decreases in depth resulted in higher 

madtom densities.  Our results are similar to Wildhaber et al. (2000a) who found that 

Neosho Madtoms prefer habitats with higher turbidities.  Wildhaber et al. (2000a) 

suggested that turbid habitats may provide Neosho Madtoms protection from predators 

and more hunting opportunities.  Our results are also similar to Bulger and Edds (2001) in 

that Neosho Madtom densities increased as waters became shallower, although in Bulger 

and Edds (2001 this pattern occurred only for YOY and breeding adults, but not for non-

breeding adults; we did not distinguish breeding from non-breeding adults.  Regardless, 

Bulger and Edds (2001) suggested that YOY use these shallower depths for feeding, 

refuge from strong currents, and to avoid competitive interactions with other benthic fish 
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species for limited resources (e.g., cavities; food), while it was posited that breeding adult 

Neosho Madtoms may use the shallower depths to decrease their predation risk while 

they care for their eggs and larvae.   

Smaller, low-head dams can negatively affect Neosho Madtom populations 

immediately (i.e., ≤ 0.1 km) downstream of dams via increased water velocity and the 

subsequent coarsening and embedding substrates that results, ultimately lowering Neosho 

Madtom densities (Tiemann et al., 2004).  However, we found no relationships between 

proximity to a lowhead dam and Neosho Madtom density, contrasting with Tiemann et 

al. (2004).  A possible explanation for why we did not observe a negative impact of 

lowhead dams on Neosho Madtom density whereas Tiemann et al. (2004) did; may have 

occurred because of differences between studies in site proximity to lowhead dams.  For 

instance, the mean distance from a lowhead dam for our study sites was 26.31 km (range 

0.12 - 56.67 km), whereas in Tiemann et al. (2004) sites were located ≤ 0.1 km from a 

dam.  If the effects of low-head dams on Neosho Madtom populations are immediate 

downstream from a dam but then rapidly dissipate, it would be more difficult for our 

study design to observe a negative effect of lowhead dams compared to Tiemann et al. 

(2004).   

We found no evidence that large dams and reservoirs were associated with 

Neosho Madtom densities.  This result was surprising, as previous studies have identified 

large dams as a major threat to Neosho Madtom populations (Wildhaber et al. 2000b; 

Tiemann et al. 2004).  A possible explanation for why we did not see a significant effect 

of large dams on Neosho Madtoms densities was that our study included sites from both 

the Neosho-Cottonwood system and the Spring River, as there are three large dams in the 
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Neosho-Cottonwood system, but none in the Spring River.  Had we only analyzed sites 

within the Neosho-Cottonwood system, we would have likely found a significant effect at 

least from John Redmond reservoir, as madtom abundance appeared to be lower 

downstream of this reservoir compared to upstream (Figure 3).  Specifically, in the 

Neosho-Cottonwood system 87/103 (84%) of madtoms captured in 2019 and 342/359 

(95%) individuals captured in 2020 were found upstream of John Redmond Reservoir, 

even though only 4/10 sample sites were upstream of this reservoir each year (Figure 

1.3).  However, it seems that Council Grove and Marion Reservoirs are not affecting 

madtom densities to the extent that John Redmond does, as madtom densities at sites 

below these reservoirs in our study were relatively high.  This could be a consequence of 

these dams being positioned more in the headwaters of the basin, causing them to have 

less severe impacts on the natural flow regime and connectivity compared to John 

Redmond dam, which is located more intermediately within the basin.  Although, our 

study sites may have been positioned too distant from Council Grove and Marion 

reservoirs to observe negative effects on Neosho Madtom densities.   

Many imperiled fish species like the Neosho Madtom are simultaneously 

impacted by multiple stressors (e.g., habitat degradation, water pollution, large and small 

dams, etc.), and some of these stressors are easier to remove than others.  Historically, 

major threats to the Neosho Madtom included large and small dams in the Neosho-

Cottonwood system and toxic metal pollution in the Spring River (Wildhaber et al. 

2000a).  However, it appears at least one of these major threats has been ameliorated, as 

toxic metal concentrations in the Spring River have decreased, with concomitant 

increases occurring in Neosho Madtom distribution and abundance.  However, the threat 
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of dams will be much harder to remove compared to metal pollution, and as such Neosho 

Madtoms will likely continue to be imperiled by other stressors.  This is especially true 

for John Redmond reservoir, as it is the water supply reservoir for Wolf Creek nuclear 

power plant.  Regardless, we observed that reducing the intensity of even one stressor 

(e.g., metal pollution) can benefit imperiled stream organisms, enhancing their potential 

for continued persistence.  
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Table 1 Percentage decrease of metal concentrations across five stream segments within 

the Spring River subbasin from 1990 to 2016.  We calculated percentage decrease from 

averages calculated for before and after 2000.  Data are from the water quality 

monitoring program conducted by the Kansas Department of Health and Environment.  

Cadmium concentrations for Spring River upstream of pollution input and Shoal Creek 

were only measured during the 1990’s. 
 Stream Segments 

Metal 

Type 

Spring River 

Upstream Center Creek Turkey Creek Shoal Creek 

Spring River 

Downstream 

Cadmium NA 47.40 23.17 NA 36.95 

Lead 58.41 64.67 59.50 73.30 65.43 

Zinc 81.70 55.40 31.75 59.80 40.77 
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Table 2 Results from competing models that sought to explain variation in total and adult Neosho Madtom densities in the Neosho, 

Cottonwood, and Spring Rivers of Kansas during 2019 and 2020.  Models are compared and arranged according to Akaike’s 

information criterion corrected for small sample size (AICc) and adjusted R2.  The local physicochemical habitat conditions model 

(top) included turbidity and depth as predictor variables, while the local physicochemical habitat conditions (global) model included 

turbidity, depth, velocity, and percent gravel/pebble substrate, and the upstream watershed characteristics (global) model included 

distance to large dam, distance to small dam, percent open water in the upstream watershed, and watershed area.  

 Total Density Adult Density 

Model AICc ∆AICc 

Adjusted 

R2 P-value AICc ∆AICc 

Adjusted 

R2 P-value 

Local Physicochemical 

Habitat Conditions 

(Top) 

116.70 0.00 0.25 < 0.01 82.22 0.00 0.30 < 0.01 

Local Physicochemical 

Habitat Conditions 

(Global) 

121.49 4.79 0.21 0.02 85.25 3.03 0.29 < 0.01 

Null (Intercept Only) 125.33 8.63 
 

0.28 93.49 11.27 
 

0.36 

Macroinvertebrate 

Biomass 127.25 10.55 - 0.03 0.78 96.94 14.72 - 0.01 0.50 

Upstream Watershed 

Characteristics 

(Global) 129.84 13.14 0.01 0.37 98.14 15.92 0.01 0.38 
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Figure 1 (A) Study area in the Spring River subbasin, with (B) Neosho Madtom densities 

across all age classes at sample sites in 2019 and (C) 2020. Sites were split with 5 above 

and 5 below the first metal-contaminated tributary input (i.e., Center Creek).  
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Figure 2 Trends in 

zinc (Zn), lead (Pb), 

and cadmium (Cd) 

concentrations during 

1990-2016 for the 

Spring River and 

several of its 

tributaries. Data are 

from the water quality 

monitoring program 

conducted by the 

Kansas Department of 

Health and 

Environment. The 

horiztonal black line 

represents the chronic 

concentration for each 

metal as designated by 

the Environmental 

Protection Agency.   
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Figure 3 (A) Study area 1 

in the Neosho River 2 
basin, with (B) Neosho 3 
Madtom densities across 4 

all age classes in 2019 5 
and (C) 2020.  6 

 7 
  8 
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Figure 4 Bar chart with 95% confidence interval (CI) error bars comparing mean Neosho 

Madtom densities (i.e., total and adult) and macroinvertebrate biomass and densities 

among the Neosho-Cottonwood River system (NCR), the Spring River above metal 

pollution (SR Above), and the Spring River below metal pollution (SR Below).  DM = 

dry mass. 

1 
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