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EFFECTS OF FOREST MANAGEMENT ON DENSITIES  

AND NEST SURVIVAL OF BREEDING BIRDS  

IN UPLAND HARDWOOD ECOSYSTEMS 

 

 

An Abstract of the Thesis by 

Michael Wade Barnes 

 

 

Over the past 50 years, significant declines in 47% of Neotropical migrant bird 

species have been documented in North America. Declines are most likely due to the loss 

and fragmentation of breeding, wintering, and stopover habitat mainly caused by 

agriculture and urban development. This loss of critical habitat results in population sinks 

that need to be maintained by immigration from a  population source found in 

continuously forested landscapes. However, in landscapes harvested for timber, forest 

management practices alter the landscape and as a result, affect breeding bird abundances 

and nest survival. The objective of our study was to determine the effects that forest 

management has on the densities and nest success of breeding birds. Territory density and 

nest survival data were compiled from nine landscape-scale experimental forest plots in 

the Ozark Highlands region of southeast Missouri. We fit linear mixed models of the 

relationships between territory densities and predictor variables that represented habitat 

structure, silvicultural treatment type, and time period. We also fit generalized linear 

models of the relationship between nest success and predictor variables that represented 

edge density, silvicultural treatment type, time period, nest stage, and day of season. For 

territory densities, we found support for models that included habitat structure, time 

period, and silvicultural treatment as predictors of seven focal species. Mature-forest 

species typically responded to habitat structure, whereas shrubland species responded to 
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prescribed silvicultural treatment. For nest success, we found support for models that 

included edge density, time period, nest stage, and day of season for Acadian flycatcher 

and indigo bunting nest survival. Acadian flycatcher nest success decreased with 

increases in edge density. Our findings demonstrate that forest management affects 

abundances and nest success and that habitat structure variables and edge effects should 

be considered when managing breeding birds in upland hardwood ecosystems. 
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Chapter I 

 

 

AVIAN RESPONSE TO HABITAT STRUCTURE AND EXPERIMENTAL FOREST 

MANAGEMENT IN UPLAND HARDWOOD ECOSYSTEMS 

 

 

Introduction 

Forests provide many ecosystem services including wood production, carbon 

sequestration, and preservation of biodiversity (Duncker et al. 2012). Forest management 

is a tool that can be used to maintain ecosystem services for the benefit of people and the 

environment. Balancing the needs of people with the needs of the wildlife that rely on 

managed forests to survive influences forest management decisions (Kohm and Franklin 

1997). Therefore, understanding how forest management practices affect wildlife 

populations is crucial to conservation efforts. Knowledge gained from forest management 

studies allows for the integration of wildlife conservation and forest management, thus 

allowing for more informed decisions (Miller et al. 2009).  

The effects of forest management on breeding bird densities have been studied 

extensively (reviewed by Thompson et al. 1995, Sallabanks and Arnett 2005). Species-

specific responses to forest management vary across regions and spatial scales 

(Millington et al. 2011, Kendrick et al. 2015, Nolet et al. 2018). Mature-forest species 

typically respond negatively to even-aged management, whereas shrubland species often 
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respond positively to both even-aged and uneven-aged management practices (Morris et 

al. 2013, Perry and Thill 2013, Perry et al. 2018). However, recent studies have found 

that species that prefer mature forests use habitat created by even-aged management 

practices, suggesting that they have more diverse habitat requirements than traditionally 

recognized (Porneluzi et al. 2014, Demarais et al. 2017, Perry et al. 2018). The habitat 

requirements of forest bird species can be dynamic and change over an individual's 

lifetime (Anders et al. 1998, Alterman et al. 2005, Vitz and Rodewald 2006, Wallendorf 

et al. 2007). Therefore a combination of management practices is needed to provide 

habitat for species with diverse habitat requirements.  

Habitat structure can be useful in predicting wildlife abundances, acting as a 

proximate and ultimate factor of habitat selection (Rotenberry and Wiens 1980, 

Bakermans and Rodewald, 2009, Di Stefano et al. 2011, Bakermans et al. 2012, Sitters et 

al. 2014). Habitat structure, including canopy cover, canopy height, vegetation volume 

(or visual obstruction),  plant species composition and density, influences densities of 

breeding birds (Beedy 1981, James and Wamer 1982, Lynch and Whigham 1984, Swift 

et al. 1984, Mills et al. 1991, Bakermans et al. 2012). Habitat structure influences the 

availability of food, shelter, nesting, predation, and competition (Beese and Bryant 1999, 

Rodewald and Yahner 2000, Brawn et al. 2001). Many studies include canopy variables 

when describing the effects of habitat structure. Our study used remaining basal area that 

can be a suitable surrogate for canopy measurements (Mitchell and Popovich 1997, 

Jennings et al. 1999, Sonohat et al. 2004, Raptis et al. 2018). Using prescribed 

silvicultural treatments to manage bird densities does not account for residual structures 

such as coarse woody debris, spatial structure, and the high variability in the development 
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of forest stands (Franklin et al. 2002). Several interrelated factors including climatic 

factors, topography, forest management practice and intensity, and land-use change, 

influence structural development of forests (Kane et al. 2015, Gatti et al. 2015, Clark et 

al. 2016, Holmes and Matlack 2017, Jucker et al. 2018). Conclusions on the effects of 

forest management on breeding birds can be difficult to make when using prescribed 

silvicultural treatments to predict densities due to the variability in this structural 

development. Directly measuring habitat factors will account for variability in the 

development of stands following harvest. 

Uncertainty remains regarding how forest management affects breeding bird 

populations. Studies examining the effects of forest management on birds are inherently 

complex in design due to different silvicultural practices used within the same 

experimental framework and confounding effects such as landscape effects. These 

complexities are only amplified by the difficulty of conducting large-scale, long-term 

manipulative experiments in an ecological setting. Also, responses typically are species-

specific and variable, making it difficult to make broad conclusions on breeding forest 

birds as a group (Thompson et al. 2000). 

Studies examining the effects of forest management practices on the densities of 

breeding birds generally use prescribed silvicultural treatments as predictors of 

abundances, rather than the change in habitat structure resulting from treatments 

(Kendrick et al. 2015, Kellner et al. 2016, Margenau et al. 2018). However, several 

studies have concluded that the spatial scale should be considered at multiple levels to 

address relationships between breeding birds and the habitat that they occupy (Vergara 

and Armesto 2009, Richmond and Burke 2012, Shew et al. 2019). For example, wood 
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thrush (Hylocichla mustelina) densities in the Prairie Hardwood Transition showed 

different responses to an index of wetness at varying spatial scales (Thogmartin and 

Knutson 2007). Wood thrush densities decreased at fine (800 ha) and coarse (80,000 ha) 

scales but increased at an intermediate scale (8,000 ha). Therefore, analyses on the 

densities of breeding birds should include multiple scales.  

Initiated in 1989 by the Missouri Department of Conservation, the Missouri Ozark 

Forest Ecosystem Project (MOFEP) is a long-term, large-scale experiment that is testing, 

in part, the effects of even-aged and uneven-aged forest management on breeding bird 

densities in upland hardwood forests (Knapp et al. 2014). In general, previous MOFEP 

studies have examined the effects of forest management at the landscape scale but did not 

account for stand-level characteristics such as habitat structure (Clawson et al. 2000, 

Gram et al. 2003, Morris et al. 2013). However, one stand-level analysis has been 

conducted (Kendrick et al. 2015). However, our analysis included an additional round of 

harvest compared to Kendrick et. al. Within the MOFEP framework, bird densities and 

habitat structure variables are measured before and after prescribed silvicultural 

treatments have been applied to a portion of forest stands. Overall, MOFEP studies have 

found declines in mature-forest species and increases in shrubland species following 

harvest with greater responses on even-aged sites then uneven-aged sites. Effects were 

also found in the no-harvest sites adding complexity to the interpretation of results.  

The objective of our study was to compare the effects of habitat structure and 

prescribed silvicultural treatment on breeding bird densities. Understanding the 

relationship between on-the-ground habitat structure (basal area, stem density, and 

heterogeneity) and breeding bird densities may lead to a mechanistic understanding of 
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how bird densities change over time in response to forest management. Therefore, we 

examined the effects of habitat structure (basal area, structural heterogeneity, and stem 

density) following harvest on breeding bird densities using 14 years of stand-level data. 

We predicted that habitat structure would be a better predictor of breeding bird densities 

than prescribed silvicultural treatments. Habitat structure is the underlying mechanism of 

forest management and can account for the variability in stand development that 

landscape-level factors cannot. 

 

Study Area 

The MOFEP study area is located in Carter, Reynolds, and Shannon Counties, in the 

Ozark Highlands region of southeast Missouri. The region is approximately 84% forested 

comprising oak (Quercus spp.)-hickory (Carya spp.) and oak-pine (Quercus-Pinus spp.) 

forests, oak savannas, bluestem (Andropogon-Schizachyrium spp.) prairies, and glades 

(Brookshire and Shifley 1997). At the beginning of the project, most overstory trees were 

50-70 years old. However, all sites contained trees older than 100 years (Shifley and 

Brookshire, 2000). Over the past 300 years, the region has been exposed to many natural 

and anthropogenic disturbances, such as fire, logging, and agriculture. Before MOFEP, 

the land was managed primarily for timber (Guyette and Larsen 2000). 

 

Methods 

Experimental Design 

The MOFEP study area was divided into 9 sites that averaged 400 ha (Fig. 1.1). Sites 

were assigned 1 of 3 management treatments: even-aged management, uneven-aged 
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management, or no-harvest. Each site includes 36–74 stands ranging from 0.16 to 62 ha.  

Stands were classified by ecological land type, slope, and aspect (Fig. 1; Brookshire and 

Shifley, 1997). Harvested sites had a re-entry period of 15 years on a 100-year rotation 

with approximately 10–15% of the total forested area removed during each harvest. All 

stands were assigned the silvicultural treatment they received during the first harvest in 

1996: clearcut, single-tree selection, group-selection, intermediate harvest (thinning and 

timber stand improvement (TSI)), or no-harvest. Clearcut sites were accompanied by 

forest thinning to promote the growth of residual trees. In uneven-aged site treatments, 

single-tree and group-selection cuts were applied to 41–69% of each site. Approximately 

10% of both even-aged and uneven-aged sites were designated as "old growth" stands 

and would not be cut for the duration of the 100-year study See Brookshire and Shifley, 

(1997) for additional details on experimental design. 

 

Bird Densities 

Densities of breeding birds were estimated using the spot-mapping technique (Svensson 

et al. 1970) before the initial harvest (1991–1995), after the initial harvest (1997–2003; 

2008–2011), and after the second harvest (2012–2014). From mid-May through the end 

of June, we surveyed for birds at each site for 3-4 hours, 5 mornings per week. For 

surveys, sites were divided into 7 subplots. All 7 subplots were surveyed before 2001, 

and a subset of 4 subplots was surveyed from 2001 to 2014. Each subplot was sampled 

8–10 times at 2–3-day intervals. Trained observers were rotated to reduce observer bias. 

All observations of singing males were recorded on a topographic map of each subplot 

and territories were designated when at least 3 clustered observations were observed on 3 
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separate dates. Territories were also identified by counter-singing males and the presence 

of nests.  

Once territories were identified, the densities of each species were calculated by 

dividing the number of territories by the area of the stand that was sampled. Following 

the methods of Kendrick et al. (2015), partial stands that were split by plot boundaries 

and stands < 2.89 ha were removed based on the minimum average territory size reported 

for ovenbirds (Seiurus aurocapilla). Ovenbirds have the largest territories of the focal 

species (Porneluzi and Faaborg 1999).   

 

Vegetation Surveys 

Within the MOFEP study area were 648 permanent vegetation plots randomly located 

with the requirement that each stand received at least 1 plot. Vegetation plots measured 

0.2 ha in size and included 4 subplots measuring 0.02 ha. Within each 0.2 ha plot, trees 

measuring ≥ 11.4 cm diameter at breast height (DBH) were recorded. Within each 0.02 

ha subplot, trees measuring between 3.8 cm to 11.4 cm were recorded.  

Stem density was calculated by dividing the total number of stems by plot area 

(0.2 ha). Stem density per stand was calculated by averaging tree density across stands. 

Basal area (BA; ft2/ac) and structural heterogeneity were both calculated from DBH 

measurements. Structural heterogeneity was calculated as the standard deviation of DBH 

to show variation in tree sizes within a stand. 
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Statistical Analysis 

Eleven focal species were included in the analysis based on abundances and detectability. 

Seven of the 11 species were classified as mature-forest species: Acadian flycatcher 

(Empidonax virescens), black-and-white warbler (Mniotilta varia), eastern wood-pewee 

(Contopus virens), Kentucky warbler (Geothlypis formosa), ovenbird, worm-eating 

warbler (Helmitheros vermivorum), and wood thrush. The remaining 4 were classified as 

shrubland species: hooded warbler (Setophaga citrina), indigo bunting (Passerina 

cyanea), prairie warbler (Setophaga discolor), and yellow-breasted chat (Icteria virens).  

We fit linear mixed models for each focal species on the relationship between 

territorial densities and habitat structure, time period, and treatment type. Data were 

separated into four time periods: pre-harvest (1992–1995), early post-harvest (1997–

2002), late post-harvest (2008–2010), and post-second-harvest (2012–2013). Year and 

site were designated as nested random effects in all models to account for potential non-

independence of data collected within the same sites and years. Thirty-three models were 

fit for each species representing different combinations of habitat structure, treatment 

type, and time period. All analyses were performed in R (R Core Team Version 3.5.1) 

using the package lme4 with the lmer function (Bates et al. 2015). Akaike's Information 

Criterion (AIC) was used to select the best-supported models for each species (Burnham 

and Anderson 2002). The model with the lowest AIC values and a delta AIC of < 2 was 

chosen as the best-supported model. Conditional R-squared (R2
c) values were reported to 

show variance explained by fixed and random effects (Nakagawa and Schielzeth, 2013). 
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Results 

A total of 11,303 territories across eleven focal species were included in our analyses. 

The total number of territories identified per year ranged from 2,395 in 1992 to 1,263 in 

2010 (Table 1.1). By species, territories ranged from 70 for prairie warblers to 2947 for 

Acadian flycatchers. A total of 358,722 trees were measured and used to calculate basal 

area, stem density, and structural heterogeneity. Following initial harvest, basal area and 

stem density were highest in intermediate harvest stands, whereas heterogeneity was 

highest in clearcut stands. Before the second harvest, basal area and stem density 

remained highest in intermediate harvest stands, and heterogeneity was highest in 

uneven-aged stands. Overall, basal area and stem density of treated stands declined from 

1992 to 2013 while heterogeneity increased (Table 1.1). 

We found support for models that included habitat structure, time period, and 

silvicultural treatment as predictors of densities of seven focal species (Table 2.1, 3.1). 

The best-supported models for four species included habitat structure variables solely, 

whereas the best-supported models for the remaining three included time period and 

treatment variables. 

The best-supported model for the Acadian flycatcher included a quadratic 

relationship with basal area (Fig. 2.1a). The  best-supported model predicted that 

densities would be lowest at low and high basal area with the highest densities at 

approximately 40 ft2/ac basal area. The best-supported model for black-and-white and 

hooded warblers included a negative relationship with basal area (Fig. 2.1b), in which 

bird densities declined with increasing basal area. The best-supported model for the 

eastern wood-pewee included a positive relationship with basal area and a negative 
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relationship with stem density and heterogeneity (Fig. 2.1d,e,f). In this case, bird 

densities increased with increasing basal area and declined with increasing stem density 

and heterogeneity. 

The best-supported models for the indigo bunting, prairie warbler, and yellow-

breasted chat included an interactive effect between time period and treatment type. The 

densities of indigo buntings in clearcut stands, were low in the pre-harvest period, spiked 

in the early post-harvest period, declined in the late post-harvest period, and increased 

following the second harvest in 2011 (Fig. 3.1). Trends were similar for the densities of 

indigo buntings in intermediate harvest and uneven-aged management stands. The 

remaining combinations of time period and treatment type (leave, no-harvest, and old 

growth) showed little effect on the densities of indigo buntings. The densities of prairie 

warblers in clearcut stands showed similar responses (Fig. 4.1), being low in the pre-

harvest period, declining in the late post-harvest period, and increasing following the 

second harvest. However, the remaining treatment types showed little effect. The 

responses of yellow-breasted chats were similar to indigo buntings (Fig. 5.1). Their 

densities in clearcut stands increased from the pre-harvest period to the early post-harvest 

period, declined in the late post-harvest period, and increased following the second 

harvest. Responses in intermediate harvest and uneven-aged management stands were 

similar to indigo bunting responses. 

 

Discussion 

Habitat structure can help account for variability in responses found at the landscape-

level and should be incorporated into further studies on forest management and its effect 
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on breeding bird densities. In general, studies analyzing the effects of forest management 

practices on the densities of breeding birds have relied on prescribed silvicultural 

treatments as their explanatory variables. However, such studies did not explain the 

mechanisms by which changes in densities occurred. Our findings demonstrate that 

habitat structure can be a more reliable predictor of densities in breeding birds than 

silvicultural treatment across time. Therefore, managing for structural characteristics 

should be taken into consideration in conservation and restoration efforts.  

Several studies have evaluated the relationship between habitat structure and 

breeding bird populations in managed forests focusing on canopy openness, canopy 

cover, and canopy closure as their predictor variables (Bakermans and Rodewald 2009, 

Bakermans et al. 2012, Newell and Rodewald 2012, Richmond and Burke 2012, Bouvet 

et al. 2016). Responses are typically species-specific and reveal the complex relationships 

between local- and landscape-level metrics and breeding bird populations that occupy 

managed landscapes. As a result, studies have suggested multiscale approaches to avian 

management in managed forests. Our findings are consistent with other studies 

examining the effects of habitat structure on breeding bird densities. Results of our study 

demonstrated that habitat structure plays an important role in predicting breeding bird 

densities. Responses were species-specific, and a multiscale approach might prove the 

best course of action to quantify the effects of forest management on breeding bird 

populations.  

As predicted, species responded to habitat structure. All species with habitat 

structure as their best-supported model contained basal area as a primary determinant of 
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density. However, responses varied among species. Differences in nesting behavior and 

life histories strategies could be a potential explanation for these variable relationships.  

Acadian flycatcher densities were highest at intermediate basal areas. A 

relationship potentially explained by the fact that Acadian flycatchers nest and forage in 

midstory canopies of mature forests (Allen et al. 2017). Midstory canopies can be 

dominant in mature forests occupying more leaf area than other canopies (Parker and 

Russ 2004).  

Black-and-white warbler densities were highest in stands with low basal area. 

Their abundances have been associated with understory and shrub densities within 

mature tracts of even-aged forest stands (Yahner 1986), and their nests are often built on 

the ground against shrubs and trees (Kricher 2014).  

Eastern wood-pewee densities were highest at high basal area, low stem density, 

and low heterogeneity. Eastern wood-pewees use more open woodland with large 

diameter trees, clear understory, and high and open canopy cover for nesting (Reidy et al. 

2014).  

Densities of hooded warblers were highest in stands with low basal area. Hooded 

warblers are known as "gap specialists," wherein they use gaps within forest tracts as 

well as edge habitat. Small gaps created by intermediate harvests and uneven-aged 

management create the low basal area and dense shrub cover where hooded warblers nest 

(Chiver and Stutchbury 2011).  

Prescribed silvicultural treatments were better predictors of the densities for three 

species. Responses were similar to previous MOFEP studies analyzing the effects of 

forest management on breeding bird densities (Morris et al. 2013,  Kendrick et al. 2015). 
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The indigo bunting, prairie warbler, and yellow-breasted chat showed substantial 

increases in densities following clearcuts, as expected for shrubland species. This result is 

consistent with other studies, corroborating previous evidence that shrubland species 

generally peak within 2–5 years of harvest and begin to decline around 10 years post-

harvest (Twedt and Somershoe 2009, Kendrick et al. 2015). Densities of shrubland 

species increased following the second harvest, but at a lower magnitude than the initial 

harvest. This relationship could be attributed to early post-harvest having more data (5 

years) than post-second-harvest (2 years), but more data are needed to confirm this 

hypothesis. Indigo bunting densities in intermediate harvest and uneven-aged 

management stands resembled those of clearcut stands, but at a lower magnitude.  

Indigo buntings use early-successional, edge, and mature forest habitat (Alterman 

et al. 2005). Small gaps in the canopy of mature forest allow for the understory 

development that creates potential nesting habitat for indigo buntings.  

The results of our study revealed an interesting trend. With the exception of 

hooded warblers, all species with best-supported models including habitat structure are 

considered mature-forest species. As for shrubland species, all best-supported models 

included prescribed silvicultural treatment with the exception of hooded warblers. As a 

gap specialist, hooded warblers require openings with shrubland habitat surrounded in 

close proximity by mature forest. This trend may suggest that mature-forest species are 

more selective in the habitat that they choose as compared to shrubland species.  

Overall, habitat structure models were better predictors of breeding bird densities 

than silvicultural treatment models for the majority of models that were supported. The 

results of this study show that it is important to incorporate habitat structure variables 
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when analyzing breeding bird densities. Solely using silvicultural treatment across time to 

predict densities allows for variability that cannot be accounted for and does not address 

the underlying mechanisms that drive the densities of breeding birds. Therefore, a 

multiscale approach might prove beneficial to make up for any shortcomings from 

analyzing at a single scale.  

 

Management Implications 

To create habitat for the greatest number of species, managers could use forest 

management to alter habitat structure directly. Maintaining intermediate basal areas 

(approximately 40 ft2/ac) could promote densities of Acadian flycatchers, black-and-

white warblers, and hooded warblers by promoting large diameter trees with a well-

developed understory to meet the habitat requirements of these species. For eastern 

wood-pewee, low levels of stem density and heterogeneity should be maintained by 

removing midstory and understory trees creating the open woodlands that eastern wood-

pewees prefer. Within the current MOFEP framework, harvests occur on a 15-year 

rotation. From the results of our study, managers could reduce the rotation to 10 years or 

less to promote greater densities of indigo buntings, prairie warblers, and yellow-breasted 

chats.  

Our findings suggest that manipulation of habitat structure may provide habitat 

for a variety of species. Species-specific responses described in our study should be 

considered when making appropriate management decisions. We demonstrate that 

knowledge of vegetation characteristics can be used to enhance classic silvicultural 

systems. Local-level, vegetation measures can be used in conjunction with landscape-

level management to more accurately manage for breeding birds. 
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Table 1.2. AIC results for breeding bird densities in the Missouri Ozark Forest 

Ecosystem Project. The model parameters are described in the text. Models include a 

combination of habitat structure (basal area, stem density, and heterogeneity), treatment 

type, and years since harvest. K = number of parameters in each model. wi = weight of 

evidence for models. R2
c = model validation metric explaining variance of fixed and 

random effects. 

Species Model k wi R2
c 

Acadian flycatcher Basal area2 6 0.96 0.14 

Black-and-white warbler Basal area 5 0.62 0.15 

Eastern wood-pewee Basal area + Stem density + Heterogeneity 7 0.97 0.18 

Hooded warbler Basal area 5 0.89 0.37 

Indigo bunting Period × Treatment 27 0.98 0.38 

Prairie warbler Period × Treatment 27 0.99 0.39 

Yellow-breasted chat Period × Treatment 27 0.99 0.37 
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Figure 1.1. Map of the Missouri Ozark Forest Ecosystem Project in southeast Missouri 

(a), and an even-aged management site showing stand-level silvicultural treatment types 

(b). 
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Figure 1.2. Predictions from the best-supported models of the relationship between (a) 

Acadian flycatcher, (b) black-and-white warbler, and (c) hooded warbler densities and 

basal area; and relationships between eastern wood-pewee densities and (d) basal area, 

(e) stem density, and (f) heterogeneity from experimental forest plots in southeast 

Missouri. Shaded areas represent 95% confidence intervals. Factor of interest varied 

while other variables were held at their mean. 
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Figure 1.3. Predictions from the best-supported models of the relationship between 

indigo bunting densities and treatment type across time from experimental forest plots in 

southeast Missouri. Bars represent 95% confidence intervals. PRE = Pre-harvest. EPOST 

= Early post-harvest. LPOST = Late post-harvest. POST11 = Post second-harvest. 
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Figure 1.4. Predictions from the best-supported models of the relationship between 

prairie warbler densities and treatment type across time from experimental forest plots in 

southeast Missouri. Bars represent 95% confidence intervals. PRE = Pre-harvest. EPOST 

= Early post-harvest. LPOST = Late post-harvest. POST11 = Post second-harvest. 
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Figure 1.5. Predictions from the best-supported models of the relationship between 

yellow-breasted chat densities and treatment type across time from experimental forest 

plots in southeast Missouri. Bars represent 95% confidence intervals. PRE = Pre-harvest. 

EPOST = Early post-harvest. LPOST = Late post-harvest. POST11 = Post second-

harvest. 
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Chapter II 

 

 

EFFECTS OF EXPERIMENTAL FOREST MANAGEMENT AND EDGE ON NEST 

SUCCESS IN UPLAND HARDWOOD ECOSYSTEMS 

 

 

Introduction 

The North American Breeding Bird Survey (BBS) has documented significant population 

declines in 33% and 48% of woodland and shrubland bird species (respectively) in North 

America since the 1960s (Sauer et al., 2017). Population declines are mainly attributed to 

the loss and fragmentation of critical breeding and wintering habitat through agriculture 

and urban development (Sherry and Holmes 1995, Faaborg et al. 2010, Bregman et al. 

2014). The loss and fragmentation of habitat results in population sinks, i.e. negative 

population growth rates (Donovan et al. 1995, Moore et al. 2010). Population sinks are 

landscapes, typically low in habitat quality, where population growth rates are negative. 

Conversely, population sources are landscapes, typically high in habitat quality, where 

population growth rates are positive. To mitigate population declines in birds, 

populations in fragmented landscapes need immigration from population sources found in 

continuously forested landscapes or large forest tracts (Manolis et al. 2002, Nol et al. 

2005). However, breeding bird populations in continuously forested landscapes are 

affected by forest management. The effects of forest management on breeding bird 
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populations are often species-specific and dependent on scale, making it difficult to 

generalize conclusions on forest birds.  

Studies examining the effects of forest management on breeding birds typically 

measure abundances, i.e. territory densities (review by Thompson et al. 1995, Sallabanks 

and Arnett 2005, Perry and Thill 2013, Kendrick et al. 2015). However, measures of 

reproductive success are needed for understanding the underlying mechanisms that 

influence breeding bird populations in managed landscapes. Reproductive measures such 

as nest survival, i.e. how likely a nest is to survive a day or nesting cycle, are critical 

components for determining population growth rates and implementing effective 

management and conservation of declining species. Therefore, understanding how forest 

management affects nest survival is crucial in understanding how forest management 

affects breeding bird populations overall. 

The results of studies analyzing the effects of forest management on nest survival 

have been mostly species-specific and vary depending on scale and forest management 

methods used. Uneven-aged management generally has little effect on nest survival 

(Dellinger et al. 2007, Leblanc et al. 2011, Richmond et al. 2012), whereas the effects of 

even-aged management on nest survival vary. Several studies have found little to no 

effect of even-aged management on nest survival (Duguay et al. 2001, Moorman et al. 

2002), whereas others have found reduced rates of nest survival as a result of even-aged 

management (Flaspohler et al. 2001, Manolis et al. 2002). Some studies examining the 

effects of even-aged management on nest survival included edge variables (Duguay et al. 

2001, Manolis et al. 2002, Hazler et al. 2006). However, they found little to no edge 

effects as a results of forest management. The creation of edge habitat may result in 
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higher rates of nest predation (Chalfoun et al. 2002, Cox et al. 2012a, Cox et al. 2012b), 

which may result in ecological traps (Weldon and Haddad 2005). Ecological traps occur 

when animals use environmental cues to select habitat. However, due to human 

disturbance, environmental cues are no longer indicative of habitat quality which results 

in individuals choosing low quality habitat (Schlaepfer et al. 2002). 

The objective of our study was to determine the effects of forest management and 

edge on the nest survival of breeding bird species in the Missouri Ozarks. Revealing how 

forest management and edge influence reproductive success may lead to a better 

understanding of effects on demographic variables that contribute to persistence of bird 

populations. Nest survival and other demographic variables contribute to the persistence 

of bird populations. Understanding  how demographic variables respond to disturbances 

like forest management is crucial to managing populations and preventing declines.  

We used Acadian flycatchers (Empidonax virescens) and indigo buntings 

(Passerina cyanea) in our analysis. Acadian flycatchers were chosen because they are 

abundant, vocally conspicuous, and their nests are relatively easy to locate and monitor. 

Acadian flycatchers demonstrate high habitat-specificity at local and landscape scales, 

and have been identified as a Neotropical migrant species of management concern in the 

Midwest, reflecting perceived threats on their breeding and overwintering grounds 

(Thompson et al. 1993, Allen et al. 2017). Indigo buntings were chosen because they are 

abundant, and because their nests are relatively easy to locate and monitor. We predicted 

that Acadian flycatcher nest survival would decrease following harvest as a response to 

loss of their preferred habitat and decrease with increases in edge density as a response to 

increased predator activity (Chalfoun et al. 2002, Allen et al. 2017). We predicted that 
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indigo bunting nest survival would likewise decrease following harvest and decrease with 

increases in edge density. Although indigo buntings are shrubland species and typically 

respond positively to even-aged management, higher concentrations of edge may lead to 

an ecological trap by increasing predation rates in otherwise suitable habitat (Donovan 

and Thompson 2001, Weldon and Haddad 2005). 

 

STUDY AREA 

Our study sites are part of the Missouri Ozark Forest Ecosystem Project (MOFEP). 

Initiated in 1989 by the Missouri Department of Conservation, MOFEP is a 100-year, 

long-term, large-scale experiment that is testing (in part) the effects of even-aged and 

uneven-aged forest management on breeding bird populations in upland hardwood forests 

(Knapp et al. 2014). Study sites were chosen as representative of the Missouri Ozarks and 

upland hardwood ecosystems in the central US. The MOFEP study area is located in 

Carter, Reynolds, and Shannon Counties, in the Ozark Highlands region of southeast 

Missouri. The region is approximately 84% forested comprising oak (Quercus spp.)-

hickory (Carya spp.) and oak-pine (Quercus-Pinus spp.) forests, oak savannas, bluestem 

(Andropogon-Schizachyrium spp.) prairies, and glades (Brookshire and Shifley 1997). At 

the initiation of MOFEP in 1989, most overstory trees were 50–70 years old with all sites 

containing some trees older than 100 years (Brookshire and Dey, 2000). Over the past 

300 years, the region was exposed to many natural and anthropogenic disturbances, such 

as fire, logging, and agriculture. Before MOFEP, the land was managed primarily for 

timber (Guyette and Larsen 2000). 
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METHODS 

Experimental Design 

The MOFEP study area was divided into 9 sites that are arranged as a randomized block 

design with 3 blocks of 3 sites (Fig. 1.1). Sites averaged 400 ha in size and were assigned 

1 of 3 management treatments: even-aged management, uneven-aged management, or no-

harvest. Each site was divided into 36–74 stands, ranging from 0.16–62 ha, based on 

ecological land type and topography (Fig. 1; Brookshire and Shifley, 1997). Even-aged 

management sites followed a 100-year rotation with a 15-year reentry period starting in 

1996. During initial harvest in 1996, 24 clearcuts were established ranging from 0.76–

16.79 ha in size. Harvested sites had approximately 10–15% of the forested area 

removed. Group-selection and single-tree cuts were applied across 41-69% of each 

uneven-aged management site. Each uneven-aged site had 84–97 group-selection cuts 

and were interspersed uniformly across the site. Group-selection cuts remove all trees 

within a small diameter. For our study, group-selection cuts averaged 30 meters in 

diameter. All stands were designated the silvicultural treatment they received during the 

initial harvest. Approximately 10% of both even-aged and uneven-aged sites were 

designated as “old growth” stands that would not be cut for the duration of the 100-year 

study. See Brookshire and Shifley, (1997) for additional details on experimental design. 

 

Data Collection 

Nests were located and monitored from mid-May through the end of June in 1991–1999, 

except for 1996 when harvesting occurred. Nests were located by searching appropriate 

habitat and observing adult behaviors, and marked each nest location with flagging tape 
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placed 5–10 meters from the nest (Ralph et al. 1993). Nests were monitored every 3–5 

days until nest fate could be determined noting predation and parasitism events (Martin 

and Geupel, 1993). Nests were considered successful if at least one nestling fledged. 

Brood parasitism by brown-headed cowbirds (Molothrus ater) reduces reproductive 

success in passerines (Robinson et al. 1995). Therefore, all parasitized nests were 

considered failed. Nests were considered depredated if signs such as a destroyed nest, 

broken egg shells near nest, feathers, etc. were found. Once nests were found, nest stage 

(laying, incubation, or nestling) was recorded for each subsequent nest check.  

We used ArcGIS 10.6 to calculate edge density (m/ha) using a 100-meter buffers 

around each nest location. For each nest, edge density was calculated by dividing the 

edge lenth (in meters) created by even-aged and uneven-aged management by the area of 

the 100-meter nest buffers. For even-aged management, edge density was calculated from 

clearcut stands whereas edge density for uneven-aged management was calculated from 

group-selection cuts. Although we did not differentiate between edge created by uneven- 

and even-aged management, models included silvicultural treatment and management 

variables that accounted for differences between the two management types. 

 

Statistical Analysis 

Data were separated into two time periods: pre-harvest (1991–1995) and post-harvest 

(1997–1999). We used the logistic-exposure method (Shaffer 2004) to estimate nest 

survival as a function of a priori hypotheses concerning prescribed silvicultural treatment, 

time period, and edge density. Generalized linear models were fit using the RMark 

package (Dinsmore and Dinsmore 2007, Laake and Rexstad 2008) within program R (R 
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Core Team Version 3.5.1). The logistic-exposure method uses the interval between nest 

checks as the sampling unit. Effective sample size for each species included the number 

of days that nests were known to have survived and the number of intervals that ended in 

a failed nest (Rotella et al. 2004). Nest stage and day of season are known to affect nest 

survival and were thus included in all models; day of season was represented as a 

quadratic term (Cox et al. 2012b, Morris et al. 2013). Day of season is adjusted from 

Julian date where day 0 represents the day the first nest was found for each species. For 

example, our first Acadian flycatcher nest was found on May 22nd, or the 142nd Julian 

date and the first indigo bunting nest was found on May 23rd, or the 143rd Julian date. 

Akaike's Information Criterion for small sample size (AICc) was used to select the best-

supported models for each species (Burnham and Anderson 2002). Models with the 

lowest AICc values and a delta AICc of ≤ 2 were selected as the best-supported model. 

We did not consider models that added only uninformative parameters to best-supported 

models (Arnold, 2010).  

For each species, we fit 6 candidate models that included a null model (nest stage, 

day of season, and day of season2); edge density alone; management models with a 

combination of time period, prescribed silvicultural treatment, and their interactions; and 

a global model with time period, prescribed silvicultural treatment, and edge density. 

Treatment was only included in models as an interaction with time period (BACI design).  

We estimated daily nest survival for Acadian flycatcher and indigo bunting nests 

using predictions for the best-supported model for each species. We calculated period 

nest survival for Acadian flycatchers based on a 30-day nesting cycle (2 lay days, 14 

incubation days, and 14 nestling days). Period nest survival for indigo buntings was 
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calculated using a 25-day nesting cycle (3 lay days, 11 incubation days, and 11 nestling 

days). To calculate period survival, daily survival rates were raised to the power of the 

nest cycle length for each of the two species. When constructing predictive plots, we 

varied the covariate of interest across its range of values while holding the other 

covariates at their means.   

 

Results 

During harvest, 599 group-selection cuts created 56.4 km of edge, and 24 clearcuts 

created 26.7 km of edge for a total of 83.1 km of edge across the MOFEP sites. 

Following harvest, 106 nests of both species included edge within 100 meters. Of those 

nests, buffers included 5.8 kilometers of edge with a mean edge density of 54.5 m/ha. 

When nest buffers without edge were included, mean edge density dropped to 22.9 m/ha 

(Table 2.1). 

 

Acadian flycatcher nest survival 

We monitored 370 Acadian flycatcher nests every 3.56 ± 1.31 days for a total of 1,567 

observations (Table 2.1).  Forty-one percent of Acadian flycatcher nests were successful. 

Predation was the primary cause of nest failure, accounting for 93% of failed nests. Little 

parasitism by brown-headed cowbirds occurred, accounting for only 1% of all nests. The 

majority of Acadian flycatcher nests were found within the incubation and nestling stages 

(9% lay, 64% incubation, and 27% nestling).  

The effective sample size was 4,406 days for Acadian flycatcher nest survival 

models. A total of 6 models were in the final model set for Acadian flycatcher nest 
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survival. The best-supported model for Acadian flycatcher nest survival included factors 

such as edge density, time period (pre- and post-harvest), nest stage (lay, incubation, and 

nestling), and a quadratic relationship with day of season (Table 2.2, 2.3). As predicted, 

daily nest survival decreased with an increase in edge density (Fig. 2.1a). Daily nest 

survival was highest early in the breeding season, decreased as the breeding season 

progressed, and increased slightly at the end of the breeding season (Fig. 2.1b). During 

the nesting cycle, daily nest survival was lowest in the laying stage, increased in the 

incubation stage, and increased even more during the nestling stage (Fig. 2.1c). However, 

95% confidence intervals did overlap suggesting no significant change. The  95% 

confidence intervals for model coefficients overlapped zero for incubation and nestling 

stages suggesting no effects on daily nest survival (Table 2.3). When adjusted for period 

nest survival for each stage (2 lay days, 14 incubation days, and 14 nestling days), period 

survival was highest during the lay stage and declined drastically during the incubation 

and nestling stages. Contrary to our predictions, daily nest survival increased from the 

pre-harvest period to the post-harvest period (Fig. 2.1d). However, 95% confidence 

intervals did overlap suggesting no significant change. Overall daily survival and period 

survival (30 days) were 0.95 and 0.2, respectively.  

 

Indigo bunting nest survival 

We monitored 132 indigo bunting nests every 3.31 ± 1 (Mean ± SD) days for a total of 

429 observations (Table 2.1). Sixty-three percent of indigo bunting nests were successful. 

Predation was the primary cause of nest failure, accounting for 90% of failed nests. No 

indigo bunting nests were parasitized by brown-headed cowbirds. The majority of indigo 
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bunting nests were found within the incubation and nestling stages (8% lay, 38% 

incubation, and 55% nestling). 

 The effective sample size was 1,031 days for indigo bunting nest survival models. 

A total of 6 models were in the final model set for indigo bunting nest survival. The best-

supported model for indigo bunting nest survival was the null model which included nest 

stage (lay, incubation, and nestling) and day of season (Table 2.2, 2.3). During the 

nesting cycle, daily nest survival decreased from the laying stage to the incubation stages, 

then increased during the nestling stage (Fig. 2.2a). However, 95% confidence intervals 

did overlap showing no significant differences of daily nest survival between nest stages. 

When adjusted for period survival for each stage (3 lay days, 11 incubation days, and 11 

nestling days), period survival was highest during the lay stage and decreased 

significantly during the incubation and nestling stages. Daily nest survival was highest 

early in the breeding season, decreased as the breeding season progressed, and increased 

at the end of the breeding season (Fig. 2.2b). Overall daily survival and period survival 

(25 days) were 0.96 and 0.36, respectively. 

 

Discussion 

Our findings demonstrate edge effects on a species of mature-forest bird do occur in 

landscapes managed for timber using even- and uneven-aged management practices. 

They also show that daily nest survival for both Acadian flycatchers and indigo buntings 

is lowest during the middle of the breeding season. Studies analyzing the effects of forest 

management on breeding birds typically measure bird abundances rather than nest 

survival (review by Thompson et al. 1995, Sallabanks and Arnett 2005, Perry and Thill 

2013, Kendrick et al. 2015). Nest survival and other reproductive measures allows for a 
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greater understanding of the underlying mechanisms that drive population growth rates. 

Several studies have evaluated the relationship between forest management and breeding 

bird nest survival (Duguay et al. 2001, Moorman et al. 2002, Dellinger et al. 2007, 

Leblanc et al. 2011, Richmond et al. 2012). Responses are typically species-specific and 

vary depending on scale and forest management practice used. Forest management can 

create edge that may attract nest predators and, as a consequence, increases rates of nest 

predation for mature-forest and shrubland species (Chalfoun et al. 2002, Weldon and 

Haddad 2005, Cox et al. 2012a, Cox et al. 2012b).  

Most studies analyzing edge effects on the nest survival of breeding birds use 

distance to edge as their edge metric (Benson et al. 2010, Bakermans et al. 2012, Jenkins 

et al. 2016). Distance to edge is important for understanding how far within a tract of 

continuous forest that disturbances such as agriculture and forest management have on 

breeding bird populations (Hoover et al. 2006, Wallendorf et al. 2007). Studies using 

distance to edge as their edge metric have found that nests that are closer in proximity to 

edge show increased rates of nest predation and brood parasitism (Hoover et al. 2006, 

Benson et al. 2010). Several species of both mature-forest and shrubland species have 

shown increases in densities within 100 meters of clearcut edges (Wallendorf, et al. 

2007). Although important, distance to edge does not address the configuration or 

intensity of harvest, or the amount of edge created by harvests. Using edge density as the 

edge metric can reveal how the shape and placement of harvests created can affect 

breeding bird populations.  

Although we did not find effects of treatment type on daily survival rates, it is 

possible that edge effects were greater in sites that received group-selection cuts than 
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those that received clearcuts. From our results, group-selection cuts had higher edge 

densities (28.31 m/ha) than clearcuts (18.61 m/ha). Despite the fact that effects of time 

period (pre- vs. post-harvest) were minimal, our results show that the edge created by 

forest management negatively affects rates of Acadian flycatcher daily nest survival. As 

predicted, Acadian flycatcher daily nest survival decreased with an increase in edge 

density. Declines in daily nest survival are likely due to an increase in nest predation rates 

which coincides with the 93% of failed nests that were depredated (Chalfoun et al. 2002, 

Allen et al. 2017). The decrease in daily nest survival could also be attributed to the shape 

of clearcuts. Irregularly shaped cuts typically contain more edge than more rectangular 

cuts (Weldon and Haddad 2005). Additionally, group-selection cuts within the MOFEP 

framework are spread throughout the uneven-aged sites in relatively close proximity to 

one another, potentially increasing edge density within 100 meters of a nest.  

As predicted, Acadian flycatcher and indigo bunting daily nest survival was 

lowest toward the middle of the season. This is mostly like due to an increase in nest 

predation rates from raptors, nonraptorial birds, and snakes. Although this was not a nest 

camera study, we are aware of the nest predators in the region from other studies looking 

directly at nest predators (Cox et al. 2012a, Cox et al. 2012b). For example, predation 

from blue jays, western ratsnakes, and broad-winged hawks can increase midseason (Cox 

et al. 2012a). Black ratsnakes and broad-winged hawks, two generalist species, are more 

likely to depredate a nest during the middle of the breeding season when more birds are 

nesting. As the season progresses, fewer birds are nesting and searching for nests 

becomes less effective than looking for other prey items (Schmidt 1999). 
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Acadian flycatcher period nest survival rates were comparable to nest survival 

estimates in landscapes fragmented by agriculture (Peak et al. 2004). This was 

unanticipated because large forest tracts and continuously forested landscapes like the 

MOFEP study area are typically viewed as a population source for mature-forest species 

like the Acadian flycatcher (Donovan et al. 1995, Burke and Nol, 2000). However, we 

can only speculate these conclusions. Peak et al. only had 4 Acadian flycatcher nests that 

were pooled with other mature-forest species. Therefore, studies with larger numbers of 

nests are required to confirm these findings. Additionally, Acadian flycatchers almost 

always renest regardless of whether or not their first nest succeeded or failed (Fauth and 

Cabe 2005, Allen et al. 2017). As a consequence, it is not known how many of the 

Acadian flycatchers with failed nest went on to renest and be successful. 

 

Management Implications 

We found no direct effects of treatment type on the nest survival of Acadian flycatchers 

and indigo buntings. Nonetheless, some important conclusions about forest management 

can be made from our results. First, edge created by timber harvest can have negative 

effects on a species of mature-forest bird species of conservation concern in the Midwest. 

It is possible that edge created by management increases rates of nest predation especially 

during the middle of the breeding season when more birds are nesting. Our results show 

that it is important to account for edge created by forest management and midseason 

peaks of nest predation when managing for breeding birds.  

To mitigate edge effects on Acadian flycatchers, managers could decrease edge 

densities created by forest management. Within the current MOFEP framework, group-

selection cuts are spread out uniformly across the uneven-aged sites where any given nest 
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is likely to be in close proximity to one of the cuts. Managers could concentrate these 

cuts to leave larger tracts of undisturbed canopy. However, more information on how 

group-selection cuts directly affect nest success should be explored across more species.  
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Table 2.1. Summary statistics of nest monitoring data and edge density for Acadian 

flycatcher and indigo bunting nests. Edge density values are from post-harvest nests. 

Variable Mean ± SD Minimum Maximum Median 

Acadian flycatcher     

Julian date 167.55 ± 9.82 142 200 167 

Observation interval (days) 3.56 ± 1.31 1 13 3 

Edge density (m/ha) 12.43 ± 24.74 0 108.3 0 

Indigo bunting     

Julian date 164.9 ± 11.44 143 202 163 

Observation interval (days) 3.31 ± 1 1 9 3 

Edge density (m/ha) 35.96 ± 37.13 0 178.33 2.71 
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Table 2.2. AIC results for Acadian flycatcher and indigo bunting nest survival in the 

Missouri Ozark Forest Ecosystem Project. The model parameters are described in the 

text. Models include a combination of edge, management, time period, nest stage, and 

day of season. K = number of parameters in each model. ΔAICc = the difference between 

the AIC values for the best-supported model and a given model. wi = weight of evidence 

for models 

Model K ΔAICc wi 

Acadian flycatcher (n = 4,409)    

Edge + Period + Stage + Date + Date2 7 0 0.64 

Edge + Stage + Date + Date2 6 3.02 0.14 

Null (Stage + Date + Date2) 5 3.49 0.11 

Period + Stage + Date + Date2 6 3.71 0.1 

Edge + Treatment × Period + Stage + Date + Date2 17 12.96 <0.01 

Treatment × Period + Stage + Date + Date2 16 13.54 <0.01 

Indigo bunting (n = 1,031)    

Null (Stage + Date + Date2) 5 0 0.46 

Edge + Stage + Date + Date2 6 1.27 0.24 

Period + Stage + Date + Date2 6 1.72 0.19 

Edge + Period + Stage + Date + Date2 7 3.25 0.09 

Management × Period + Stage + Date + Date2 10 6.85 0.01 

Edge + Management × Period + Stage + Date + Date2 11 8.75 0.01 
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Table 2.3. Estimated coefficients for the best-supported models for Acadian flycatcher 

and indigo bunting nest survival. Significant effects are in bold. 

Parameter Coefficient 
Standard 

Error 

Lower 95% 

CI 

Upper 95% 

CI 

Acadian flycatcher     

Intercept 5.64 0.69 4.29 6.99 

Edge density -0.01 0.004 -0.02 -0.002 

Pre-harvest -0.35 0.16 -0.66 -0.04 

Incubation 0.03 0.22 -0.41 0.47 

Nestling 0.19 0.27 -0.35 0.72 

Date -0.11 0.04 -0.20 -0.03 

Date2 0.001 0.0006 -0.0002 0.002 

Indigo bunting     

Intercept 5.3 1.05 3.24 7.36 

Incubation -0.04 0.49 -1 0.92 

Nestling 0.02 0.53 -1.01 1.05 

Date -0.15 0.07 -0.29 -0.003 

Date2 0.002 0.001 -0.0003 0.004 
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Figure 2.1. Predictions from the best-supported model of the relationship between 

Acadian flycatcher daily nest survival and (a) edge density, (b) day of season, (c) nest 

stage, and (d) time period. Bars and shaded areas represent 95% confidence intervals. 

Factor of interest varied across range of values while other variables were held at their 

mean. 

  

b 
a 
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Figure 2.2. Predictions from the best-supported model of the relationship between indigo 

bunting daily nest survival and (a) nest stage and (b) day of season. Bars and shaded 

areas represent 95% confidence intervals. Factor of interest varied across range of values 

while other variables were held at their mean. 

  

b a 
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