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GRAPHENE NANORIBBONS AND THEIR POLYMERIC NANOCOMPOSITES: CONTROLLED SYNTHESIS, 
CHARACTERIZATION AND APPLICATIONS 

 
 

An Abstract of the Thesis By 
Nada Aljehany 

 
 

Carbon-based materials are very promising as electrode materials energy generation and storage 

devices. They have been used for fuel cells, supercapacitors and solar cells. Among the carbon-based 

materials, graphene is very attractive due to its unique properties such as high electrical conductivity, 

good mechanical flexibility, large theoretical surface area (2630 m2/g), and high thermal and chemical 

stability. These unique properties make them very suitable for energy storage applications particularly for 

supercapacitors. The performance of the graphene as energy storage material could be further improved 

by growing them in nanoribbon form by unzipping carbon nanotubes. In this thesis, we report synthesis 

and characterization of graphene nanoribbons from multiwall carbon nanotubes (MWCNT). The 

synthesized graphene nanoribbons were structurally and electrochemically characterized. The shift of 

(002) peak in graphene nanoribbons compared to MWCNT confirms unzipping of MWCNT and its 

exfoliation. 

Other materials such as conducting polymers have been also used for energy applications. The 

performance of the conducting polymers such as polyaniline can be improved by making composites with 

graphene. We have found that nanocomposites of polyaniline with graphene nanoribbons (PA-GNR) have 

better performance for energy storage applications. The performance of the nanocomposites, polyaniline 

and graphene nanoribbons were electrochemically tested using cyclic voltammetry and galvanostatic 

charge-discharge methods. Cyclic voltammetry was performed at various scan rates to understand the 

charge transport mechanism. It was observed that the specific capacitance of the PA- GNR 

nanocomposites decreases with increasing scan rate. The overall charge storage capacity of the PA-GNR 

composites was higher than that of GNR. The higher charge storage capacity of the PA-GNR composites is 
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due its enhanced surface area and synergistic effect between polyaniline and graphene nanoribbons. A 

symmetric supercapacitor device was fabricated using PA-GNR composite. The effect of temperature on 

the charge storage capacity of the device was tested. It was observed that the charge storage capacity of 

the supercapacitor device increases with an increase in temperature. The results suggest that graphene 

nanoribbons and composites of polyaniline with graphene nanoribbons could be used as an electrode 

material for supercapacitor applications. 
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CHAPTER I 
 

 
INTRODUCTION 

 
 

Energy is one of the most important and essentials items to the survival of life. It is very important 

to explore and develop alternative resources to generate and store the generated energy in a 

sustainable way. Energy can be generated mainly from two resources; namely, nonrenewable and 

renewable. Fossil fuels are considered as nonrenewable energy resources and are the main 

resource for generating energy in developing countries. Energy from solar cells, hydropower and 

wind are considered as renewable energy. Solar cells, the most popular energy devices, directly 

convert the solar light into electricity. Hydropower is the other type of renewable energy source. 

These devices utilize the power of running water to generate energy.  Hydropower has several 

types such as small hydro, micro hydro, conventional hydroelectric, run-of-the-river 

hydroelectricity and pumped storage hydroelectricity. Wind energy is another important 

renewable resource to generate energy in a sustainable way.  Wind energy is generated using 

wind turbines or sails. The energy from these natural (and renewable) resources have become 

very popular; however, most of the generated energy gets wasted due to inefficient energy 

storage devices. The generated energy needs to be stored efficiently so that we can reduce the 

energy loss and the energy can be used when needed.  

Batteries, fuel cells and capacitors are some of the most popular ways to store energy. A 

battery stores energy in chemical form and can be converted to electricity when needed. There 

http://energy.gov/science-innovation/energy-sources/renewable-energy/water


2 

are two main types of batteries: primary, or non-rechargeable, batteries and secondary batteries, 

which are rechargeable. Another important energy storage device is capacitors or 

supercapacitors. Supercapacitors differ from a conventional capacitor in terms of charge storage 

capacity. Supercapacitors store higher charge (energy) compared to conventional capacitors. 

Supercapacitors are also known as ultracapacitors or double-layer capacitors (EDLC). A schematic 

of an EDLC is shown in Figure 1.1.  

 

Figure 1.1: Principle of electrical double layer capacitor. 

 

Figure 1.2: EDLS charge-discharge. 

In an EDLC, the electric double layer is formed due to separation of the ions. By applying 

a voltage across the two electrodes, the electrically charged ions in the electrolyte migrate: 
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positively charged ions move to the negative electrode and negatively charged ions move to the 

positive electrode, creating two charged layers inside the electrolyte. The charge-discharge 

process of EDLC is shown in Figure 1.2. The charge-discharge process in conventional capacitor is 

very fast which provides very high power density. On the other hand, due to the chemical reaction 

involved, the power density of the batteries is very low, but they provide very high energy density. 

Supercapacitors are bridging the gap between conventional capacitors and batteries.  

 Capacitors are mainly classified into three categories based on their charge storage 

mechanism. The first one is double-layer capacitance (conventional capacitor); the second one is 

electrochemical pseudocapacitance, where energy is stored due to Faradic reactions. The third 

one is hybrid capacitors which is a combination of both above mentioned capacitors. In hybrid 

capacitors, energy is stored due to both electrochemical double-layer and faradic processes. Most 

of the carbon-based materials store energy due to the formation of electrochemical double layers. 

Metal oxides and conducting polymers are a few examples of materials used for 

pseudocapacitors. The classification of the capacitors and most commonly used materials are 

shown in Figure 1.3.  The details of these capacitors are discussed in the following sections.  

 

 Figure 1.3: Types of Capacitors and materials used. 

https://en.wikipedia.org/wiki/Double-layer_capacitance
https://en.wikipedia.org/wiki/Pseudocapacitance
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1.1  Electrical Double-Layer Capacitors (EDLCs)  

In EDLCs, the capacitance of the device is directly proportional to the surface area of the 

electrodes. The materials, such as carbon nanopowders, could provide high specific capacitance 

due to their large surface area. Commonly in EDLCs, two electrodes made of carbon are used. 

These electrodes are separated by an ion-transporting layer socked in electrolyte. In EDLCs, there 

is an accumulation of charges on the surface of the electrode, when the voltage is applied. The 

ions diffuse across the separator to the pores of the electrode that have an opposite charge. The 

EDLCs could provide high power densities because of the fast ion transportation 1. Most 

commonly, activated carbon is used for the fabrication of EDLCs. Other common materials are 

graphene (graphite), carbon aerogel, carbide derived carbon, graphene and carbon nanotubes 

(CNTs). 

1.2 Pseudocapacitors 

The second most common capacitors are pseudocapacitors. Pseudocapacitors provide higher 

charge storage capacity compare to EDLCs. The higher charge storage capacity is due to the 

Faradic reaction involved in the process. Pseudocapacitors store energy due to charge transfer 

that occurs at the surface of the faradic electrodes. The processes that are involved in charge 

transfer are reduction-oxidation reactions, electrosorption and the process of intercalation 2-4. 

Conducting polymers and metal oxides are the common examples of the materials used for 

pseudocapacitors.  

1.3 Hybrid capacitors 

This is the third type of supercapacitors. Hybrid capacitors utilize both mechanisms 

(electrochemical double layer and Faradic process) to store energy. This type of capacitor provides 

high energy densities and high power densities compared with electrolyte double-layer capacitors 
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and pseudocapacitors. There are three types of hybrid capacitors that have been executed by 

their electrode configuration. These are composite, asymmetric, and battery-type 5.  

In composite electrodes, carbon-based materials are combined with either metal oxide 

materials, conducting polymer, or both in one single electrode. This carbon-based material 

enables a capacitive double-layer of charge storage and they also provide a high-surface-area 

which can increase the contact between the pseudocapacitive materials (metal oxide materials 

or conducting polymer) and the electrolyte. The pseudocapacitive materials are themselves able 

to increase the capacitance of the composite electrode through Faradaic reactions 6. Composite 

electrodes made from carbon nanotubes and conducting polymers such as polyaniline have been 

widely studied. These studies demonstrated that such an electrode is able to deliver higher 

capacitances compared to pure carbon-based - or pure polyaniline-based electrodes. 

Another type of hybrid capacitor is asymmetric hybrids. Asymmetric hybrids combine 

Faradic and non-Faradic processes by coupling a pseudocapacitor electrode with an electrolyte 

double-layer electrode. Recently the coupling of a negative carbon electrode with the positive 

conducting polymer electrode has achieved a greater demand 6. These types of hybrid capacitors 

are less stable but could provide higher capacitance. They also show less resistance and high 

power/energy densities 7. 

The third type is battery-type hybrid capacitors. These also couple two different types of 

electrodes together, like asymmetric hybrid capacitors; however, these are unique as they couple 

a supercapacitor electrode with a battery electrode. This type of configuration enhances the 

efficiency of the devices. They have higher energy densities than supercapacitors and also have 

higher power densities than that of batteries. The electrodes that are mostly used are nickel 

hydroxide, lead dioxide for one electrode and another electrode is made of activate carbon. This 

type of capacitor is bridging the gap between batteries and supercapacitors 8,9.  
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Newly developed supercapacitors are environmentally friendly and could provide high 

energy 10 . There are many advantages of supercapacitors over batteries. Supercapacitors have 

longer life and are very safe compared with lithium ion batteries and acid batteries 11. 

Supercapacitors are widely used in remote controls, toys, traffics signals etc.12.  In the following 

sections, we will focus on some of the materials commonly used for energy storage applications.  

1.4 Carbon Nanotubes (CNTs) 

Carbon nanotubes are being used as electrode material for energy storage applications, 

particularly for EDLCs 13. Such types of capacitors that have CNTs have open and approachable 

network of mesoporous. In these capacitors, there is a connection between the mesoporous, and 

they are interlinked. This permits the equal and continuous distribution of charges. Thus, these 

are more efficient than those of carbon activated and carbon aerogels 14. These also have low 

electrical series resistance (ESR) and can even reduce ESR more as compared to activated carbons. 

Due to this type of network, they have higher energy densities and higher power densities 15. For 

example, Wenelska et al. have decorated carbon nanotubes by mesoporous cobalt oxide as an 

electrode material for lithium-ion batteries 16.  

1.5 Graphene 

Graphene has a unique structure and distinguished characteristics. It has high electrical 

conductivity and large surface area. It also has very high mechanical strength. Due to these unique 

properties, graphene is very suitable for energy applications particularly for solar cell, batteries 

and supercapacitors 17,18. Our group has used graphene for supercapacitor applications 19. It has 

been observed that graphene-decorated NiCo2O4 showed better charge storage properties 

compare with NiCo2O4. Lai et al. have studied the effect of surface functionalization of graphene 

on energy storage capacity 20.   
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1.6 Composites 

The main advantages of conducting polymers are their high conductivity and capacitance and low 

cost in contrast to carbon-based electrode materials such as CNT and graphene 6. However, they 

possess low mechanical strengths and stability 21. Composite electrodes incorporate carbon-

based materials with other high energy storage materials such as metal oxides.  The carbon-based 

materials provide high surface area, whereas metal oxides provide high energy storage capacity 

due to Faradic reaction. This combination provides a material with high energy storage capacity 

and improved stability 22,23. The composites of graphene and polyaniline have been synthesized 

for improved energy storage capacity 24. The composite electrode showed better energy storage 

capacity compared with that of individual materials and also showed good cycling stability. The 

composite materials could be synthesized via various methods such as chemical, interfacial, 

electrochemical deposition on preformed carbon nanotube electrodes, or by electrochemical co-

deposition.  

In this work, we have synthesized nanocomposites of graphene nanoribbons with 

polyaniline. Graphene nanoribbons were synthesized by unzipping carbon nanotubes. The 

unzipped carbon nanotubes were dispersed in aqueous media using the sonication process and 

then polyaniline was chemically polymerized over these nanoribbons. The detailed structural and 

electrochemical characterizations for their applications as electrode materials for supercapacitor 

were performed. 
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CHAPTER II 
 

 
EXPERIMENTAL DETAILS 

 
 
2.1 Materials and synthesis 

The details of the materials used, and synthesis processes of graphene nanoribbon, polyaniline 

and their composites, are given below: 

2.1.1. Synthesis of graphene nanoribbons (GNR) 

Graphene nanoribbons were synthesized using multiwall carbon nanotubes with outer 

diameters of 110-170 nm. In a typical synthesis, 1 g of multiwall carbon nanotubes was dispersed 

in 280 ml of sulfuric acid (H2SO4) and 32 ml of phosphoric acids (H3PO4) using magnetic stirrer. To 

this mixture, 10 g potassium permanganate (KMnO4) was slowly added with constant stirring at 

65oC. The mixture was left in this condition for an additional 4 hours. Finally, the reaction mixture 

was cooled to room temperature and poured over 800 ml of ice water containing hydrogen 

peroxide (40 ml, 30 %). The resulting mixture was congealed overnight then filtered (using 0.2 µm 

mesh PTFE from Millipore) and washed in succession with hydrochloric acid (30 %), ethanol (100 

%), and diethyl ether (anhydrous). The final black material was dried at 65oC in a vacuum oven for 

10 hours. 
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2.1.2. Synthesis of polyaniline 

Polyaniline was chemically polymerized using aniline and ammonium persulfate (APS) in 

acidic condition. For the synthesis of polyaniline, 0.19 ml of aniline was dissolved in 100 ml of 1M 

sulfuric acid and then cooled to 5oC using an ice bath. In another beaker, 4.56 g of ammonium per 

sulfate was dissolved in 50 ml of 1M sulfuric acid, and this solution was also cooled to 5oC. The 

ammonium persulfate solution was added dropwise to the aniline solution under stirring. Black 

precipitate started appearing upon the addition of ammonium per sulfate. The mixture was 

stirred continuously at 5oC for an additional 3 hours. After this, the resulting precipitate was 

filtered and washed with DI water several times. The obtained powder was dried in vacuum at 

50oC for 10 hours. 

2.1.3. Synthesis of composites of GNR-polyaniline 

The procedure to synthesize composites of GNR-polyaniline was very similar to that of 

polyaniline. However, different amounts of graphene nanoribbons (Table 2.1) were dispersed in 

the aniline solution before adding ammonium per sulfate.  

Table 2.1: Experimental details for the synthesis of composites of GNR-polyaniline 

Sample code Aniline in 100 ml 
1M H2SO4 

(ml) 

APS in 100 ml 
1M H2SO4 

(g) 

GNR  

(mg) 

PANI-GNR-105 0.19 4.56 4.65 (0.5 wt %) 

PANI-GNR-106 0.19 4.56 9.30 (1 wt %) 

PANI-GNR-107 0.19 4.56 23.25 (2.5 wt %) 

PANI-GNR-108 0.19 4.56 46.5 (5 wt %) 

PANI-GNR-109 0.19 4.56 93.0 (10 wt %) 
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2.2. Materials characterizations 

The synthesized materials were characterized using different techniques such as Fourier 

transform infrared spectroscopy (FT-IR), X-Ray diffraction (XRD), Raman spectroscopy, scanning 

electron microscopy (SEM) and electrochemical methods. The details of these techniques are 

given below:  

 2.2.1.  Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy (FT-IR) is an analytical technique in which 

infrared light is used to measure the absorption and emission of liquid, solid or gas, to characterize 

their properties. The information about the chemical bonds and molecular structure of the 

material is provided by creating an absorbance spectra of the sample as a function of wavenumber 

during the FTIR analysis. The FT-IR spectra of all the samples were recorded on a Shimadzu IR 

Affinity-1. A picture of the FT-IR instrument used is given in Figure 2.1.  

 

Figure 2.1. Picture of FT-IR instrument used. 
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              2.2.2. X-Ray Diffraction 

X-ray diffraction (XRD) is a rapid analytical technique that can give information on unit 

cell dimensions and is used for phase identification of a crystalline material. By using a Shimadzu 

X-ray diffractometer set in 2θ-θ scan (with CuKα1 radiation, λ=1.5406 Å), the structure of the 

synthesized materials was investigated. Slits of 0.2 mm were used for the source and detector 

sides. To generate the X-ray, a voltage of 40 kV and a current of 30 mA were used. By using a 

detector, diffraction patterns in the form of X-ray counts were collected when the sample was 

rotated through 2θ = 25° - 70°. A picture of the XRD instrument used is given in Figure 2.2.  

 

Figure 2.2: Picture of XRD instrument used. 

2.2.3. Raman spectroscopy 

Raman spectroscopy is a spectroscopic technique that is based on inelastic collision of 

monochromatic light (in most cases it is LASER) with matter; that interaction causes changes in 
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frequency and energy of the incident photons. The photons are absorbed by the sample and are 

re-emitted; the frequency of re-emitted photons shifts down or up, and this shifting of frequency 

of the photons is known as the Raman Effect. This provides information about rotational, 

vibrational and other low frequency transitions taking place in molecules. All types of samples 

(solid, liquid and gases) can be analyzed by Raman Spectroscopy. When electromagnetic radiation 

interacts with the molecules, the polarizable electron-cloud density and the bonds in the 

molecules face change in their environment; this inelastic scattering of the photons either excites 

the molecules from lower rotational and vibrational energy states to higher rotational and 

vibrational energy states or de-excites the molecules from higher rotational and vibrational 

energy states to lower rotational and vibrational energy states. In the results of these excitations 

and de-excitations, the frequency of incident photons is changed, which is called Raman Shift. A 

picture of Raman spectroscopy instrument used is given in Figure 2.3. 

 

Figure 2.3: Picture of Raman instrument used. 
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2.2.4. Scanning electron microscopy characterization 

Scanning electron microscopy (SEM) was used to examine the morphologies of the 

synthesized graphene nanoribbons, polyaniline and their nanocomposites. A JEOL JSM-840A 

scanning electron microscope and an FEI Quanta 200 field emission scanning electron microscopy 

(FESEM) equipped with an Oxford INCA 250 silicon drift X-ray energy dispersive spectrometer 

(EDS) were used to study the particle size and morphology of the powder samples. A picture of 

the Raman spectroscopy instrument used is given in Figure 2.4.         

 

Figure 2.4: Picture of SEM instrument used. 

2.2.5. Electrochemical measurements 

The electrochemical measurements were done on a Versastat 4-500 electrochemical 

workstation (Princeton Applied Research, USA), as shown in Figure 2.5. The electrochemical 

measurements were performed using the three-electrode system, which consists of a saturated 

calomel electrode as a reference electrode, a platinum wire as a counter electrode and a working 
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electrode synthesized (GNRs, PANI and PA-GNRs nanocomposites) on nickel foam. The schematic 

diagram of the three-electrode system is shown in Figure 2.6. Before preparing the working 

electrode, the nickel foam was cleaned using 3M HCl followed by cleanings using water and 

acetone respectively with the assistance of ultrasonication. The working electrode was prepared 

by mixing 80 wt.% of the samples, 10 wt.% of carbon black and 10 wt.% of polyvinylidene 

difluoride (PVdF) in the presence of N-methyl pyrrolidinone (NMP) that was used as a solvent to 

make paste. After mixing the components, the nickel foam was dipped in this paste followed by 

drying at 60°C under vacuum overnight. For all the measurements, 3M KOH was used as 

electrolyte. Besides electrochemical investigation on single electrode, a symmetric supercapacitor 

was fabricated and tested as well. The supercapacitor device was assembled by pressing two PA-

GNR electrodes together with an ion-transporting layer (Celgard 25 μm, thick, 39% porosity) 

between as the separator (Figure 2.7). In all experiments performed, 3 M KOH was used as an 

electrolyte for this assembly. The charge storage capacity of the electrode and device was 

measured using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. The 

study of the effect of temperature on the electrochemical properties of the device was done for 

its application in rough conditions. 

 

Figure 2.5: Potentiostat used for electrochemical measurements. 
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Figure 2.6: The schematic diagram of the three electrodes system. 

 

 

Figure 2.7: Schematic diagram of a quasi-solid state supercapacitor device.   
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CHAPTER III 
 

 
RESULTS AND DISCUSSION 

 
 
3.1. FT-IR analysis 

The structural characterizations of the synthesized samples were performed using FT-IR 

spectroscopy. Figure 3.1 shows the FT-IR spectrum for CNT. No functional groups were detected 

in the FT-IR spectrum of CNT. After being unzipped, the obtained graphene nanoribbons exhibit 

distinguishing vibration peaks (Figure 3.2) which include: a broad and intense O-H peak at 3282 

cm-1, a strong C=O peak of carboxylic acid at 1740 cm-1, C-O peak at 1367 cm-1, a C-O-C peak at 

1199 cm-1, and a C-O stretching peak at 1041 cm-1 25. 

For pure PANI, as seen in Figure 3.3, several peaks were also observed. The peak at 1734 

and 1550 cm-1 could be attributed to the C=C stretching of the quinoid ring and C=C stretching of 

the benzenoid ring, respectively. The peaks at 1367 and 1225 cm-1 could be ascribed to C–N 

stretching of the benzenoid unit and C–N stretching of the quinoid unit, respectively 26. The peaks 

at 1054 and 932 cm-1 are attributed to the aromatic C-H bending both in and out of the plane for 

the 1,4-disubstituted aromatic ring 27. 
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Figure 3.1: FT-IR spectra of CNT. 

 

Figure 3.2: FT-IR spectra of GNRs. 

FT-IR spectra of PANI-GNRs nanocomposite, in Figure 3.4-3.8, exhibited further evidence of 

interaction between GNR and PANI in the composites. Compared with that of PANI, the spectrum 

of PANI-GNR provided almost the same characteristic vibrations as PANI, but it was observed that 

some C–H bending peaks shifted to a higher wave number due to  𝜋 − 𝜋  interaction and hydrogen 
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bonding between the graphene sheets and PANI in the composites. This indicates that the PANI 

was deposited on the GNR’s surface and chemically bounded 26. 

 

Figure 3.3: FT-IR spectra of polyaniline (PANI) sample. 

 

Figure 3.4: FT-IR spectra of PANI-GNR-105 sample. 
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Figure 3.5: FT-IR spectra of PANI-GNR-106 sample. 

 

Figure 3.6: FT-IR spectra of PNAI-GNR-107 sample. 
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Figure 3.7: FT-IR spectra of PANI-GNR-108 sample. 

 

Figure 3.8: FT-IR spectra of PANI-GNR-109 sample. 
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graphite phase of the carbon. The GNR (Figure 3.10) showed a strong diffraction peak at 10.5, 

which can be indexed as (002) reflections of graphite; the other small peak around 44 is 

corresponding to (004). For pure PANI, as seen in Figure 3.11, the XRD patterns showed three 

characteristic peaks. The peaks at 15.3 and 25.4 are attributed to the periodicity, both 

perpendicular and parallel to the polymer chain, respectively. The peak at 20.8 resulted from the 

layers of polymer chains at alternating distances 28 In the XRD pattern of nanocomposite PANI-

GNRs, most of the peaks correspond to pure polyaniline. This could be due to the addition of a 

very small amount of GNRs in the composites, which is not detectable using XRD.  

 

Figure 3.9: XRD patterns of CNT. 
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Figure 3.10: XRD pattern of GNRs. 

 

Figure 3.11: XRD pattern of polyaniline (PANI) sample. 
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Figure 3.12: XRD pattern of PANI-GNR-105 sample. 

 

Figure 3.13: XRD pattern of PANI-GNR-106 sample. 
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Figure 3.14: XRD pattern of PANI-GNR-107 sample. 

 

Figure 3.15: XRD pattern of PANI-GNR-108 sample. 

 

10 20 30 40 50 60 70

In
te

n
s

it
y

 (
a

.u
.)

2 (Degree)

10 20 30 40 50 60 70

In
te

n
s
it

y
 (

a
.u

.)

2(Degree)



25 

 

Figure 3.16: XRD pattern of PANI-GNR-109 sample. 

3.3. Raman spectroscopy 

The specific features of the GNRs, PANI and their polymeric nanocomposites were further 

analyzed using Raman spectroscopy. The Raman spectrum of GNRs is shown in Figure 3.17. As 

seen in the Raman spectrum of GNRs, two prominent peaks around 1354 cm-1 and 1596 cm-1 

correspond to D and G peaks of carbon, respectively. The G peak represents the vibration of sp2-

hybridized carbon and the D peak corresponded to conversion of a sp2-hybridized carbon to a sp3-

hybridized carbon 29. The intensity of graphitic peak (G) is higher than the diamond phase peak 

(D), suggesting the GNRs are rich in graphitic phase. It is worth mentioning that the graphitic phase 

is the conducting form of the carbon whereas the diamond phase is non-conducting. The high 

percentage of conducting phase of carbon in GNR is favorable due to its ability to reduce the series 

resistance during the charging and discharging processes 30. Raman spectrum of the pure 

polyaniline is shown in Figure 3.18. The peaks at 1241 and 1173 cm−1 correspond to the C-H 

bending vibrations of benzene and quinoid rings, respectively, while the peaks at 1554 and 

1492 cm−1 correspond to C = C stretching vibrations of benzenoid and quinoid rings, respectively. 
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Figure 3.19 shows the Raman spectrum of the PANI-GNR-107 sample; the intensities of the two 

peaks were weakened, and that could be due to the strong interactions between the graphene 

and PANI. 

 

Figure 3.17: Raman spectrum of GNRs sample. 
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Figure 3.18: Raman spectrum of polyaniline sample.  
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Figure 3.19: Raman spectrum of PANI-GNR-107 sample.  

3.4. Scanning electron microscopic analysis 

Scanning electron microscopy was used to investigate the morphology and structure of CNT, GNR, 

PANI and PANI-GNRs composites.  Figure 3.20 shows the SEM images of carbon nanotubes at 

various magnifications. The GNRs synthesized from CNT is shown in Figure 3.21. It is seen that the 

tubular structure of CNT is changed to a sheet-like structure after unzipping it. Figure 3.22 

demonstrates the porous structure for polyaniline without any graphene. Figures 3.23-3.27 show 

the SEM images of different nanocomposites of PANI-GNRs. As seen, the addition of small 

amounts of graphene in PANI does not change the structure of polyaniline significantly. However, 

higher amount of GNRs in the composites showed the presence of graphene sheets in the 

composites (Figure 3.26 and 3.27).  

0 500 1000 1500 2000 2500 3000

In
te

n
s

it
y

 (
a

.u
.)

Raman shift (cm-1)

1330

1554



28 

 

Figure 3.20: SEM images of CNT sample at various magnifications. 

 

Figure 3.21: SEM images of GNRs sample at various magnifications. 

 

Figure 3.22: SEM images of PANI sample at various magnifications. 
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Figure 3.23: SEM images of PANI-GNR-105 sample at various magnifications. 

 

Figure 3.24: SEM images of PANI-GNR -106 sample at various magnifications. 

 

Figure 3.25: SEM images of PANI-GNR -107 sample at various magnifications. 
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Figure 3.26: SEM images of PANI-GNR -108 sample at various magnifications. 

              

Figure 3.27: SEM images of PANI-GNR -109 sample at various magnifications. 

3.5. Electrochemical measurements 

3.5.1. Three-electrode system  

Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurements were 

performed to study the electrochemical properties of the synthesized graphene nanoribbons, 

polyaniline and their nanocomposites. The effects of scan rate and charge-discharge current 

density on the electrochemical properties of graphene nanoribbons, polyaniline and their 

nanocomposites were investigated in detail in 3M KOH electrolyte. Figure 3.28-3.36 show the 

cyclic voltammograms of CNT, GNR, PANI and PANI-GNRs nanocomposite samples at various scan 
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rates. Comparing the electrochemical properties of CNT with GNR, it can be seen that GNR is 

better, which is due to the presence of more graphitic phase and high surface area through 

unzipping CNT. The CV curves of polyaniline at low scan rates show the presence of two pairs of 

redox peaks. These peaks correspond to doping and undoping of protons and anions in polyaniline 

and the transformation between different forms of polyaniline during a potential scan. At higher 

scan rates, these processes are merged, and only one pair of redox peaks were observed. In all 

the PANI-GNRs composites, one pair of redox peaks was also observed, indicating that redox 

process is the predominating mechanism for energy storage in these composites. It was observed 

that even at high scan rate, the CV curves are very similar, indicating high electrochemical rate 

stability of the synthesized materials. As stated earlier, the CV curves of CNT, GNR, PANI and PANI-

GNRs nanocomposite showed a pair of redox peaks in oxidation and reduction process.  

 

Figure 3.28: Cyclic voltammograms curves of CNT at various scan rates. 
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Figure 3.29: Cyclic voltammograms curves of GNRs at various scan rates. 

 

Figure 3.30: Cyclic voltammograms curves of polyaniline at various scan rates. 
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Figure 3.31: Cyclic voltammograms curves of polyaniline at low scan rates. 

 

Figure 3.32: Cyclic voltammograms curves of PANI-GNR-105 at various scan rates. 
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Figure 3.33: Cyclic voltammograms curves PANI-GNR-106 at various scan rates. 

  

Figure 3.34: Cyclic voltammograms curves of PANI-GNR-107 at various scan rates. 
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Figure 3.35: Cyclic voltammograms curves of PANI-GNR-108 at various scan rates. 

  

Figure 3.36: Cyclic voltammograms curves of PANI-GNR-109 at various scan rates. 
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Specific capacitance (Csp) of CNT, GNR, PANI and PANI-GNRs nanocomposites was calculated 

using data from the cyclic voltammetry measurements. The specific capacitance of as-prepared 

electrodes was calculated using the following expression 31 

𝐶𝑠𝑝 =𝑄/[∆𝑉×(𝜕𝑣 /𝜕𝑡 )×𝑚]   

where Q is the area under the CV curve, 𝜕𝑣/𝜕𝑡 is the scan rate, ∆𝑉 is the potential window and m 

is the mass of the sample used in the electrode. Figure 3.37-3.44 show the variation of specific 

capacitance as a function of scan rate for all the samples in the 3M KOH electrolyte. It was 

observed that the specific capacitance of the electrodes was decreasing with increasing scan rate 

in all the studied samples. The decrease in specific capacitance with increasing scan rate could be 

due to insufficient time for the redox reaction at the electrode. At a higher scan rate, the 

concentration of the ions at the electrode/electrolyte interface increases rapidly, and the 

diffusion rate of electrolyte from electrode/electrolyte interface to electrode will be not enough 

to satisfy the electrochemical reactions 32.The highest specific capacitance was observed for PANI-

GNR-108 sample. The maximum specific capacitance of 7359 F/g was calculated for PANI-GNR-

108 sample in 3M KOH electrolyte. 
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Figure 3.37: Specific capacitance as a function of scan rate for CNT. 

 

Figure 3.38: Specific capacitance as a function of scan rate for GNRs. 
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Figure 3.39: Specific capacitance as a function of scan rate for polyaniline. 

 

Figure 3.40: Specific capacitance as a function of scan rate for PANI-GNR-105.  
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Figure 3.41: Specific capacitance as a function of scan rate for PANI-GNR-106. 

 

Figure 3.42: Specific capacitance as a function of scan rate for PANI-GNR-107. 
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Figure 3.43: Specific capacitance as a function of scan rate for PANI-GNR-108.  

 

Figure 3.44: Specific capacitance as a function of scan rate PANI-GNR-109. 
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a potential window of 0 to 0.6 V (vs. Saturated Calomel Electrode, SCE). Furthermore, charge-

discharge studies were performed at various discharge current densities. The galvanostatic 

charge-discharge characteristics of the samples are shown in Figures 3.45-3.52. As seen, the 

discharge time decreases with an increase in discharge currents, indicating reduced charge 

storage capacity at higher current densities.  

 

Figure 3.45: Galvanostatic charge-discharge characteristics of CNT electrode at various applied 

currents. 
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Figure 3.46: Galvanostatic charge-discharge characteristics of GNRs electrode at various applied 

currents. 

 

Figure 3.47: Galvanostatic charge-discharge characteristics of polyaniline electrode at various 

applied currents. 
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Figure 3.48: Galvanostatic charge-discharge characteristics of PANI-GNR-105 electrode at 

various applied currents. 

 

Figure 3.49: Galvanostatic charge-discharge characteristics of PANI-GNR-106 electrode at 

various applied currents. 
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Figure 3.50: Galvanostatic charge-discharge characteristics of PANI-GNR-107 electrode at 

various applied currents. 
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Figure 3.51: Galvanostatic charge-discharge characteristics of PANI-GNR-108 electrode at 

various applied currents. 
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Figure 3.52: Galvanostatic charge-discharge characteristics of PANI-GNR-109 electrode at 

various applied currents. 

The specific capacitance (Csp) of the electrodes was calculated from the discharging curves using 

the equation given below 33: 

   𝐶𝑠𝑝 = 𝐼×∆𝑡/∆𝑉×𝑚   

where I is the discharge current (A), ∆t is the discharge time (s), ∆V is the potential window (V) 

and m is the mass of the active materials. It was observed that the specific capacitances of all the 

electrodes decrease when discharge current is increased (Figures 3.53-3.60). The decrease in 

specific capacitance with the increase of the discharge current is due to the increase of potential 

drop and insufficient Faradic redox reaction at higher discharge currents 34. 
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Figure 3.53: Variation of specific capacitance with applied current for CNT sample.   

 

Figure 3.54: Variation of specific capacitance with applied current for GNRs sample.   
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Figure 3.55: Variation of specific capacitance with applied current in for polyaniline sample.   

 

Figure 3.56: Variation of specific capacitance with applied current for PANI-GNR-105.   
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Figure 3.57: Variation of specific capacitance with applied current for PANI-GNR-106.   

 

Figure 3.58: Variation of specific capacitance with applied current for PANI-GNR-107.   
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Figure 3.59: Variation of specific capacitance with applied current for PANI-GNR-108.   

 

Figure 3.60: Variation of specific capacitance with applied current for PANI-GNR-109.   
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capacity of the device at room temperature and at elevated temperatures was investigated. 

Figure 3.61 shows the cyclic voltammetry curves of the device at room temperature at different 

scan rates. As observed from the curves, the shape of the CV curve is nearly identical even at 

higher scan rates, indicating high electrochemical stability of the fabricated device. Additionally, 

the CV curves are nearly rectangular in shape, suggesting near ideal capacitive behavior of the 

fabricated device. 

The percentage change in the specific capacitance of the device as a function of 

temperature is shown in Figure 3.62. A roughly 112 % improvement in the charge storage capacity 

of the device was observed by increasing temperature from 10°C to 70°C. The improved 

performance at higher temperatures could be due to higher mobility of electrolyte ions and low 

series resistance of the device. Based on the results, it can be concluded that the supercapacitor 

device based on PANI-GNR nanocomposites could be used in a wide temperature range.   

 

Figure 3.61: Cyclic voltammograms curves of the device at room temperatures at various scan 

rates. 
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Figure 3.62: Specific capacitance of the device versus temperatures and % change in specific 

capacitance of the device versus temperatures. 

The electrochemical impedance spectroscopy (EIS) of the device at various temperatures 

was studied to better understand the charge storage process in the device. Figure 3.63 shows the 

variation of real and imaginary impedance (Nyquist plots) of the device at various temperatures. 
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Figure 3.63: Nyquist plots of the device at various temperatures.  

 

Figure 3.64: Nyquist plots of the device zoomed near origin at various temperatures.  
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Figure 3.65: Variation of impedance of the device as a function of frequency at various 

temperatures.  
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CHAPTER IV 
 

 
CONCLUSION 

 
 

Graphene nanoribbons were synthesized by unzipping carbon nanotubes using a chemical 

method. Unzipping these carbon nanotubes (graphene nanoribbons) showed a shift in the lattice 

parameter compared with pure carbon nanotubes. This result indicated that this chemical process 

exfoliates the unzipped carbon nanotubes too. The graphene nanoribbons were used to 

synthesize nanocomposites with polyaniline. The synthesized graphene nanoribbons, polyaniline, 

and their nanocomposites were structurally and electrochemically characterized. The FT-IR 

studies indicated that graphene nanoribbons are functionalized, which make them disperse well 

in an aqueous solution. The Raman spectra confirms the presence of both diamond and graphite 

phases of the carbon. The microstructural analysis using scanning electron microscopy indicated 

a nanostructure nature of the composites with a homogenous mixture of the components. It was 

observed that the electrochemical properties of the nanocomposites are better than pure 

polyaniline and graphene nanoribbons. The energy storage capacity increased with an increase in 

amount of graphene nanoribbons, and then began to decrease with further increase. The 

maximum specific capacitance was observed for the nanocomposite having 5 wt% of graphene 

nanoribbons. A quasi-solid supercapacitor device was fabricated using two PA-GNR-108 

electrodes. The CV curve of the fabricated device was nearly rectangular in shape, suggesting near 

ideal capacitive behavior of the fabricated device. The effect of temperature on the energy 

storage capacity was studied; it was observed that the energy storage performance increased by 
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about 110% by increasing the temperature from 10 to 70 oC. The improved performance at a 

higher temperature was explained on the basis of series resistance and impedance of the device. 

Our study suggests that nanocomposites of polyaniline and graphene nanoribbons could be a 

potential material for energy storage applications.   
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