Construction of High-Performance 3D Nanostructured Flower-Like Iron-Nickel Sulfide for Supercapacitor

Chen Zhao
Pittsburg State University

Sanket Bhoyate
Pittsburg State University

Chunyang Zhang
Pittsburg State University

Ram K. Gupta
Pittsburg State University

Pawan K. Kahol
Pittsburg State University

Follow this and additional works at: https://digitalcommons.pittstate.edu/posters_2019

Part of the *Energy Systems Commons*

Recommended Citation

https://digitalcommons.pittstate.edu/posters_2019/66

This Article is brought to you for free and open access by the Research Colloquium 2019 at Pittsburg State University Digital Commons. It has been accepted for inclusion in Posters by an authorized administrator of Pittsburg State University Digital Commons. For more information, please contact lfthompson@pittstate.edu.
Construction of high-performance 3D nanostructured flower-like iron-nickel sulfide for supercapacitor
Chen Zhao, C. Zhang, S. Bhyate, P. K. Kahol, Ram Gupta
Pittsburg State University, Pittsburg, KS, 66762, USA

Introduction & Purpose
- The global energy crisis and environmental pollution have stimulated increasing attention to develop clean and renewable alternative energy sources.
- Supercapacitor as a non-polluting energy storage device captures people’s attention due to high-power density, fast charge–discharge rate, wide temperature range and long cycle life.

Methods
- In this work, we synthesized high-performance nanostructured flower-like iron-nickel sulfide grown on 3D nickel foam for energy storage application using a facile hydrothermal method.

Results and discussion

Summary
- The FeNiS electrode exhibited a superior performance for supercapacitor with a large areal capacitance of 13.2 F/cm² at the scan rate of 1 mV/s and 4.9 F/cm² at the current density of 5 mA/cm², respectively.
- The capacitance of FeNiS was more than 11 and 54 times higher than that of FeNiO and nickel foam at 5 mA/cm², respectively.
- In addition, FeNiS electrode showed the great stability of the charge-discharge study with 77.3 % charge retention after 5,000 cycles.
- Our study suggested that the synthesized nanostructured flower-like iron-nickel sulfide could be a promising material for energy storage applications.

Reference & Acknowledgement
- This project was supported by Pittsburg State University and Kansas Polymer Research Center.