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METHOD DEVELOPMENT FOR THE ANALYSIS OF ALUMINUM, CALCIUM, 

MAGNESIUM AND IRON IN SEDIMENTARY ROCKS 

 

 

 

An Abstract of the thesis by  

Zainab Ali Alhawdar 

  The focus of this study involved the analysis of sedimentary rocks by using atomic 

absorption spectroscopy. There are three classifications of sedimentary rocks: organic, 

formed as a result of vital activity of organisms such as coal; non-organic (chemical), 

formed in the process of evaporation of concentrated mineral solution such as limestone, 

dolomite, gypsum, salt and chert; and clastic (fragmental), formed from pre-existing rocks 

as a result of their fragmentation followed by further hardening and cementing such as 

conglomerate, breccia, sandstone, siltstone and shale. 

 There are various analytical methods for analyzing sedimentary rocks, all of which 

require dissolving and digestion of the rock samples. The next step after digestion involves 

the burning off of organic content, and followed by separation of the silicates from all the 

other elements. Once the separation is achieved, then the analysis for the elements in the 

samples is performed using atomic absorption spectroscopy (AAS). 

 The study focused on the analysis of four elements: aluminum, calcium, iron and 

magnesium. Standard solutions of aluminum, calcium, iron and magnesium were made 

with their concentrations ranging from 500-1000 ppm. Four unknown samples of 

sedimentary rocks labeled: XGP1, XGP2, XGP3 and XGP4, were analyzed by atomic 

absorption spectroscopy at instrument settings that are specific to each element. The 

percentage of each element in the samples used was determined and is reported in the body 

of the thesis. 
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CHAPTER I 

INTRODUCTION 

The crust of the Earth is formed of minerals and rocks, which constitutes more than 

one-third of raw materials utilized in the various spheres of people’s activities. No adequate 

engineering construction could be performed without thorough geochemical studies such 

as this one. Without an understanding of in-depth processes of chemical composition of 

rocks, an effective use of mineral resources is impossible; thus, an accurate investigation 

of rocks is vitally important for promoting successful economic activity. 

 

1.1. MAIN ROCK FORMING FACTORS 

Rock is a geological body that can be characterized by a special composition (e.g. 

plagioclase, orthoclase, clay, quartz etc.), structure and texture (e.g. grained, chalky, 

bedded, homogeneous etc.). In other words, rock is an aggregate of particles of the same 

or different nature1. 

The formation of rock is a permanent process: after having been formed, rocks are 

worn down and then are reformed. This process, known as the rock cycle or geochemical 
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cycle2, lasts for thousands of years. The six following most crucial processes underlying 

rock formation1 are defined below: 

a. Tectonic movements of lithosphere, resulting in stretching, which leads to 

heating and thinning of the lithosphere and excessive pressure of tectonic 

plates when knocking against each other3. 

b. Volcanic eruptions, which are a powerful driving force behind the 

transportation of particles. Volcanic dust, ejected to a significant height 

during an explosion, remains suspended during long periods of time and 

then covers large geochemical areas as it settles4. 

c. Weathering implies physical (mechanical), chemical or biological 

decomposition of the rocks thus changing their chemical composition and 

forming secondary minerals5. The process of weathering is primarily based 

upon oxidation and dissolving; its rate is determined by climatological 

conditions such as frost, droughts, heat etc. 6. 

d. Chemical reactions and bioprocesses in the aqueous media (primarily 

marine). 

e. Increased pressure and temperature in the interior of the Earth. 

f. Melting, degassing, recrystallization, precipitation and other 

physicochemical processes. 

Rock formation represents a system of interconnected phenomena as discussed 

above7. If we trace the history of shale, for example, we can draw a chain of successive 

transformations influenced by various factors, as can be seen in Figure 11,2:  



   

 

 3 

 

Figure 1. Geological history of shale 

From this we could conclude that during over the geochemical cycle the rock is 

affected by a complex set of factors. 

 

1.2. TYPES OF ROCKS 

Rocks can be classified according to several characteristics2: 

 Structure (petrographic approach), indicating the manner of construction of 

the rock and the way its components are connected with each other. This characteristic 

affects crystal morphology, relative grain size etc. 

 Texture (grain packing, roughness, orientation, etc.). 

 Mineralogical composition. 

 Chemical composition. 

 Geological origin. 

The classification of rocks given here is based on their origin and composition. 

Generally, the rocks can be classified as shown in the Figure 1. However, Frost, R.B., and 

Frost, C.D.7 offer an extra category for igneous rocks being hypabyssal or subvolcanic. 

Also, an alternative approach to the classification of sedimentary rocks is provided4. 

The types of rocks shown in Figure 2 can be characterized as follows. 
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Figure 2. Classification of rocks (adapted from refences 1, 2 and 7) 

1.2.1. IGNEOUS (MAGMATIC) ROCKS: 

Igneous (magmatic) rocks were formed in or on Earth in two ways:  

a. Underground, when crystallization and solidification of magma occurred 

inside the crust (plutonic or intrusive type), represented by granite, diorite, 

and gabbro. 

b. On the surface, through crystallization and solidification of magma on the 

Earth’s surface. Such types of rocks are referred to as extrusive or volcanic 

(e.g. pumice, obsidian and basalt). 
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The hypabyssal type of igneous rocks is the intermediate between volcanic and 

plutonic rocks. They were formed underground, but at a shallow depth. Examples of this 

type are dolerite and picrite. 

Basically, igneous rocks can be described as felsic (feldspar + silica), mafic (Mg + 

Fe), or ultramafic (felsic minerals absent). The felsic rocks are light-colored, and the 

ultramafic are of dark color. 

Igneous rocks have a chemical composition that may include the following oxides: 

Na2O, K2O, CaO, FeO, MgO, Fe2O3, Al2O3, SiO2, and TiO2. However, all of these oxides 

are rarely present in the rock altogether. They formed the minerals from which the 

International Union of Geological Sciences (IUGS) classification of plutonic rocks stems, 

where Q, A, P, F, and M stand for quartz, alkali feldspar, plagioclase, feldspathoids, and 

mafic minerals respectively. The rock considered as Q, A, P, or F-type means that the 

content of mafic minerals in it is less than 90%7. 

 

1.2.2. METAMORPHIC ROCKS: 

Metamorphic rocks are any type of rock that has undergone metamorphic changes 

under the impact of increased temperature and pressure (150 – 200℃, 1500 bars)1. The 

core of the changes transforms the mineral into a different form, such as marble and gneiss. 

While investigating metamorphic rocks, one is usually interested in the conditions 

of metamorphism and the type of its deformation, but the most crucial question is its origin, 

i.e. the parent rock (the protolith). Thus, they can be classified into three types according 

to their parentage (sedimentary, igneous, and uncertain). The first group can be represented 
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by quartzite, quartzose, pelite, and psammite, which are metamorphic equivalents of chert, 

sandstone, shale, and impure sandstone respectively. Rocks of clearly igneous parentage 

have very few protoliths (mainly ultramafic and alkaline). The rocks of uncertain origin 

can be categorized into two groups: mafic and quartzo-feldspathic. 

 

1.2.3. SEDIMENTARY ROCKS: 

Sedimentary rocks, in contrast to igneous and metamorphic rocks, were formed on 

the Earth’s surface at low temperatures and pressures. The vast majority of rocks that are 

found on the Earth’s surface are sedimentary. The major factors affecting formation of 

sedimentary rocks are sedimentation of clasts, biochemical processes in aqueous media and 

deposition of particles driven by the force of water, wind, ice or gravity. This type of rock 

could originate either from fragments of rocks having undergone mechanical or chemical 

weathering, or from biochemical processing of fossil remains.  

Sedimentary rocks can be classified into three broad categories: 

 Organic, formed as a result of vital activity of organisms such as coal. 

 Non-organic (chemical), formed in the process of evaporation of 

concentrated mineral solution such as limestone, dolomite, gypsum, salt and chert. 

 Clastic (fragmental), formed from pre-existing rocks as a result of their 

fragmentation followed by further hardening and cementing such as conglomerate, breccia, 

sandstone, siltstone and shale. 

Sometimes, however, a different approach to classification of sedimentary rocks is 

used, as can be seen Figure 2. They are divided into exogenous (analogue to clastic) and 
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endogenous (organic and non-organic) groups. Exogenous rocks, according to their clasts’ 

size, can be defined as coarse-grain, medium-grain and fine-grain rocks. Endogenous rocks 

include carbonate, evaporite and siliceous rocks.  

For the formation of sedimentary rocks, the following stages are crucial:  

 Weathering of older rocks as a result of the joint impact of solar energy, 

freezing-thawing cycles, abrasion, erosion, hydration, oxidation and biodigestion of rocks. 

 Evaporation and crystallization of minerals from solutions. 

 Transportation of materials in the solid or dissolved state and their 

deposition or sedimentation. 

 Lithification (consolidation), which is a general term for the processes of 

porosity destruction (compaction, cementation, etc.). 

As a result of these processes, four fundamental groups of particles arise which 

serve as the building materials of sedimentary rocks when taken in different proportions5: 

a. Terrigenous siliciclastic particles. The majority of igneous, metamorphic 

and old sedimentary rocks consist mostly of silicate minerals. Under the impact of water, 

ice or wind, these rocks, fragmented during the process of weathering, were transported 

together with clay and other land-derived minerals into depositional basins. Their further 

lithification led to formation of sandstones, conglomerates and shales.  

b. Chemical (biochemical) constituents. This is the process by which the 

precipitated minerals of either chemical or biochemical origin are usually referred. These 

materials form intrabasinal sedimentary rocks (cherts, evaporites, phosphorites, and 

limestones). 
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c. Carbonaceous constituents (humic materials, sapropelic residues and 

bitumen) were formed from plant tissue, zooplankton, chemical transformation of 

petroleum, etc. Coals were primarily formed of these kinds of constituents. 

d. Authigenic constituents. These are minor constituents, which were usually 

added to the sedimentary rocks during their burial as a result of precipitation of pore water 

inside the pile. They include quartz, clay, calcite, gypsum, and hematite. 

 

1.3. FACTORS AFFECTING THE CHEMICAL COMPOSITION OF ROCKS 

Because weathering is the most important rock-forming process, the composition 

of rocks is entirely dependent on its rate and processes involved. Among the three types of 

weathering, the one that fully addresses the chemical and mineralogical composition of 

rocks is chemical weathering. The factor that contributes the most to chemical weathering 

is the presence of water and dissolved gases.  

There are a number of chemical processes involved in weathering, Those processes 

are listed below3,4,8: 

1. Congruent solution: 

SiO2 (quartz) + 2H2O  H4SiO4 (silicic acid)  (Direct solution) 

CaCO3 + H2O + CO2  Ca2+ + 2HCO3
-  (Carbonation) 

For the examples shown in the preceding reactions, complete dissolution of the 

soluble minerals in water (H2O) is called direct solution. Dissolution of the soluble 

minerals in water (H2O) and carbon dioxide (CO2) is called carbonation. Calcite, 

gypsum, dolomite and halite are highly soluble minerals while quartz is less soluble. 
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2. Hydrolysis: 

2KAlSi3O8 + 2H+ + 9H2O  H4Al2Si2O9 + 4H4SiO4 + 2K+ 

For the example shown in the preceding reactions, the dissolution can be illustrated by 

forming kaolinite rock (H4Al2Si2O9) from orthoclase feldspar rock (2KAlSi3O8). 

2NaAlSi3O8 + 2H+ + 9H2O  H4Al2Si2O9 + 4H4SiO4 + 2Na+ 

For the example shown in the preceding reactions, the dissolution can be illustrated of 

forming kaolinite rock from albite (NaAlSi3O8). 

Hydrolysis is of great importance for the release of metals from the minerals broken 

down by acids. The reaction is between the H+ and OH- ions of water and ions of silicate 

minerals. Due to the fact that this type of dissolution is incomplete, it is called an 

incongruent dissolution.  

3. Oxidation and reduction:  

This is the process when an element has lost an electron in minerals to dissolved 

oxygen. Iron and manganese are the common elements in silicate minerals such as biotite 

and pyroxenes. The following reactions illustrate the transformation of pyrite and rhodonite 

into hematite and pyrolusite respectively: 

2FeS2(pyrite) + 15/2O2 + 4H2O  Fe2O3 (hematite) + 4SO4
2- + 8H+  

MnSiO3 (rhodonite) + 1/2O2 + 2H2O  MnO2 (pyrolusite) + H4SiO4 

4. Hydration and dehydration: 

This is the process involves water hydration or dehydration of minerals. Hematite 

rock (Fe2O3) hydrates to form goethite rock (FeOOH) by the following reaction: 
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Fe2O3 + H2O  2FeOOH 

Gypsum rock (CaSO4 · 2H2O) loses water to form anhydrite (CaSO4) according to the 

following reactions: 

CaSO4 · 2H2O  CaSO4 + 2H2O 

5. Ion exchange, particularly, cation exchange:  

This is the process where ions in a mineral are exchanged with ions in a solution. 

Cation exchange is of significant importance for the alteration in the forms of clays and 

zeolites, which can be seen from the following reactions: 

K-clay + Mg2+  Mg-clay + K+ 

Ca-zeolite + Na+  Na-zeolite + Ca2+ 

6. Chelation: 

This is the formation of a complex compound of metals with organic substances 

having a ring structure. The metals are bound in such a way that they are prevented from 

precipitation under a wide range of pH values. 

Another important factor affecting the chemical composition of rocks, particularly 

sedimentary rocks, is subaerial weathering, during which two important chemical rock-

forming processes take place: 

 Development of the secondary minerals, mostly clay, iron oxides or 

hydroxides and aluminum oxides or hydroxides that occur during the processes of 

hydrolysis and simple dissolution.  

 Production of soluble materials from which limestones and cherts are 

formed in seawater environment due to hydrolysis, oxidation and simple dissolution. 
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The work presented in this thesis is aimed at the analysis of the geochemical 

composition of sedimentary rocks. Understanding of the chemical composition of these 

rocks is highly relevant to the agricultural as well as to the petroleum-producing industries. 

 

1.4. ANALYSIS TECHNIQUES 

 A primary technique that is traditionally used in the analysis of sedimentary rocks 

is Petrographic microscopy.  This technique was first introduced in 1849 and has been the 

primary laboratory tool used in the analysis of sedimentary rock5 until recently where it is 

being replaced by a number of other techniques which include and list: 

 The sieve and pipette analysis – for defining the size of the grains. 

 Backscattered electron microscopy, Fourier analysis, X-radiography – for 

determining structure. 

 X-ray fluorescence, inductively coupled argon plasma emission spectrometry 

(ICP), secondary ion mass-spectrometry (SIMS), atomic absorption spectroscopy 

(AAS) – for investigating the sample’s chemical composition. 

 

1.4.1. STRENGTHS AND WEAKNESSES OF EACH ANALYSIS TECHNIQUE 

X-ray fluorescence is one of the classical analytical methods, being successfully 

put into practiced since 1928. Generally it’s based on the ionization of atoms in the sample 

exposed to short-length x-rays or gamma rays. While falling onto the lower orbital from 

the unstable excited position, the atom emits radiation with the unique spectrum, which can 
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be successfully used for identification of this atom. The advantages of the method include 

high accuracy of the analysis and, for the elements of interest include of aluminum, 

calcium, iron and magnesium, analysis lines are precisely defined. 

However, the method has a drawback, sometimes the sample preparation for the x-

ray fluorescence becomes a problem, which is connected with the necessity to maintain the 

strict geometry of the sample. 

Inductively coupled plasma emission spectrometry (ICP) is a powerful up-to-

date analytical tool for the analysis of sedimentary rocks. The basics of the method include 

converting the sample solution into an aerosol and directing it into plasma, where at the 

temperature of 10000 K analyzed elements exist as free atoms in the gaseous phase. While 

relaxing to the ground state, they emit protons, whose energy spectra allow identification 

of elements9. Among the advantages of the method there are usage of the inert carrier 

(argon), and ability to analyze up to 70 elements at the same time, including the elements 

of interest. 

The weaknesses of the method are the necessity of thorough sample preparation 

(digestion, extraction), and the complexity of method and high cost of the equipment 

involved. 

Secondary ion mass-spectrometry (SIMS) is the method for analyzing the 

composition of solids which implies sputtering the surface of the sample with the beam of 

primary ions and obtaining analytical signals from the secondary ions and its measurement 

with the help of the mass-spectrometer. The undisputable advantages of the method are the 

possibility of analyzing of all the elements and detection limits in ppb rate (10-6 gram per 

1 gram of sample). 
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The weak points of the method are quite significant. First of all, the requirements 

to the physical properties of the sample; and, secondly, one can face serious difficulties 

converting data collected from the mass-spectrometer into mass or concentration. 

Atomic Absorption Spectrophotometer (AAS) is an analytical technique for 

determining the concentrations of elements. Atomic absorption is so sensitive that it can 

measure down to parts per billion of a gram in a sample. Atomic absorption spectrometry 

has multiple uses in various areas of chemistry: clinical analysis, environmental analysis, 

pharmaceuticals, industry and mining. 

Atomic absorption spectroscopy is based on the absorption of light with a specific 

energy by a ground state atom causing it to undergo an excitation to a higher energy state. 

The intensity of light absorbed by an element is proportional to its concentration. The 

intensity of light absorbed at a specific wavelength will increase as the number of atoms of 

the selected element in the light path increases. Atomic absorption spectroscopy requires a 

primary light source, an atom source, a monochromator, a detector, electronics and data 

display or reporting system. 

The light source uses a different lamp for each element to be determined. The atom 

source produced free atoms from the sample. The most common atom source is an 

air/acetylene or nitrous-oxide/acetylene flame. The monochromator is used to isolate the 

specific wavelength of light to be measured. The detector is used to measure the light 

accurately. The electronics are used to process the date signal. The data display or reporting 

system is used to show the results10,11.  The various components of a typical atomic 

absorption spectrometer are shown in the schematic diagram found in figure 3. 
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Figure 3. Perkin Elmer Instrument Atomic Absorption Spectrophotometer 

1.5. THE ATOMIC ABSORPTION SPECTROMETER WORKS 

 The sample--through which radiation of a chosen wavelength that is using a hollow 

cathode lamp (HCl), and is of a very narrow bandwidth (0.001nm) is sent—is atomized in 

the flame. Since the cathode is constructed of the analyzing element, the radiation will be 

specific to that element only. The most current gas mixtures used is air/acetylene or nitrous-

oxide/acetylene which flows into the nebulizer creating a partial vacuum which causes the 

solution containing the analyzing element to be aspirated into the nebulizer, via a plastic 

capillary tube, which is then converted into an aerosol. The oxidant/aerosol is then swept 

into the spray chamber where it is mixed with the fuel gas. The mixture is then forced into 

the flame, which is of a sufficiently high temperature to cause the atomization of the analyst 

element. The free atoms thus formed absorb radiation from the HCL which is focused onto 
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the center of the flame about 5-10mm above the burner slot. This radiation has now been 

attenuated by an amount related to the concentration of free atoms in the flame and hence 

in the solution now enters the monochromator. This allows only a narrow region of the 

spectrum, typically 0.5nm centered on the pre-selected wavelength of the resonance line of 

the analyzing element, to pass into photomultiplier. This amplifies the resulting display. 

The schematic diagram11 is shown in Figure 4. 

 

Figure 4. The schematic digram 

1.6. METHODOLOGIES USED IN ROCK DIGESTIONS 

There are various analytical methods for analyzing rocks, all of which require 

complete dissolution and digestion of the rock samples. The next step after the digestion 

involves the burning off of organic content, which is followed by the separation of the 

silicates from other elements. Once the separation is achieved, analysis of the elements is 

carried out using Atomic Absorption Spectroscopy. 
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1.6.1. DIGESTION USING HYDROCHLORIC ACID: 

 The use of hydrochloric acid (HCl)12 to digest rocks is an old method. In this open-

vessel digestion method, the rock sample is first ignited in a platinum crucible to burn off 

the organic contents. The platinum crucible is used to avoid decrepitating of the rock 

samples. Following this initial step, the ignited residue is placed in a porcelain casserole 

and digested by adding a solution of 5% HCl (v/v). This digestion is normally done at 

temperatures below the boiling point of the acid (110C). As a result, complete dissolution 

and digestion of the rock samples is not achieved, leading to inaccurate analysis of the rock 

material. Another drawback of this method is the fact that HCl under the temperature 

conditioned mentioned above does not efficiently break down the strong Si-O bond of 

silicates leaving the silicates as insoluble material that is difficult to separate from the 

digested solution. 

 

1.6.2. DIGESTION USING AMMONIUM BIFLURIDE AND NITRIC ACID: 

 Another open-vessel method that is widely used in the digestion of rock material 

involves the use of a mixture of ammonium bifluoride (NH4HF2) and nitric acid (HNO3)13. 

This method replaced a hydrofluoric acid (HF) digestion method that, although very 

efficient in breaking-down the silicate Si-O bonds, utilizes the highly toxic and corrosive 

HF. Ammonium bifluoride which is less corrosive than HF was found to react with silicate 

efficiently at high temperatures (230C). In the ammonium bifluoride method, solid 

NH4HF2 is initially added to the rock sample in screw-top Teflon vials and is heated in an 

oven at temperatures as high as 230C. Once sufficient time was allotted to insure complete 
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decomposition of the silicates, nitric acid was used to complete the digestion process. It 

was proven to be effective and safe, the ammonium bifluoride/HNO3 method is not 

economical due to the high price of the screw-top Teflon vials used as vessels. 

 

1.7. DISSOLUTION/DIGESTION METHOD USED IN THIS WORK 

 Due to the relatively high price of the screw-top Teflon vials used in the method 

discussed in section 1.6.2, we developed a procedure where the NH4HF2/HNO3 digestion 

of the rock samples is carried out in non-screw-top Teflon vessels that if suitable will render 

the method more economical than the procedure traditionally carried out in the literature. 

The research discussed in this thesis describes the use of this method in the analysis of the 

geochemical compositions of sedimentary rocks of unknown compositions from Oklahoma 

City collected from various sites and at different depths. The efficacy of this method will 

be tested by analyzing a sample of limestone with a known chemical composition.  
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CHAPTER II 

EXPERIMENTAL 

2.1. MATERIALS 

 The material listed below is used as obtained from the listed companies without 

further processing. 

Aluminum metal (Al) was purchased from Sigma. 

Ammonium Bifluoride (NH4HF2) was purchased from Fisher Scientific Company. 

Calcium carbonate (CaCO3) was purchased from Sigma. 

Deionized distilled water (H2O). 

Hydrochloric acid (HCl) was purchased from Sigma. 

Iron metal (Fe) was purchased from Sigma. 

Lanthanum Oxide (La2O3) was purchased from Sigma. 

Limestone rocks. 

Magnesium metal (Mg) was purchased from Sigma. 

Nitric acid (HNO3) was purchased from Sigma. 

Phosphoric acid (H3PO4) was purchased from Sigma. 

Potassium chloride (KCl) was purchased from Fisher Scientific Company. 

Teflon vessels were purchased from Fisher Scientific Company. 
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Unknown samples analysis (XGP1, XGP2, XGP3 and XGP4). 

2.2. PREPARATION STANDARD SOLUTIONS 

2.2.1. PREPARATION OF ALUMINUM STANDARD SOLUTION 

An amount of 1.0113 g of aluminum metal was weighed using an analytical balance 

and was placed in a beaker. 15 mL of concentrated hydrochloric acid (HCl) was added, 

followed by 5 mL of concentrated nitric acid (HNO3) that was added into the beaker that 

contained the aluminum metal. Then, the beaker was covered by a watch glass. The beaker 

was warmed gently for 4 minutes or until all of the aluminum reacted completely. The 

solution was transferred to a 1-liter volumetric flask. The volumetric flask was then filled 

to the 1L mark with deionized water to give 1011.3-ppm aluminum stock solution. 

An amount of 95.0000 g of potassium chloride (KCl) was weighed using an 

analytical balance and was transferred to a 1-liter volumetric flask. The volumetric flask 

was then filled to the 1L mark with deionized water. 

Standards were made from stock aluminum to use as calibration standards at the 

time of analysis. The stock solution of aluminum was mixed with potassium chloride. To 

each 100 mL of standard solution alike 2 mL of potassium chloride solution was added. 

Aluminum was partially ionized in the nitrous oxide-acetylene flame. To suppress 

ionization, potassium chloride was added to the stock solution. The addition of a readily 

ionizable element such as potassium was used to overcome enhancement interference from 

other alkali metals. 
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2.2.2. PREPARATION OF CALCIUM STANDARD SOLUTION 

An amount of 3.0000 g of calcium carbonate (CaCO3) was weighed using an 

analytical balance, was placed in a beaker and was dried in the oven at 180C for 1 hour. 

After the calcium carbonate was dried, 1.2501 g of CaCO3 was weighed and was placed in 

a beaker. 25.00 mL of concentrated hydrochloric acid (HCl) was added, followed by 25.00 

mL of deionized water that was added into the beaker that contained calcium carbonate 

and was stirred using a stir rod to make a solution. The solution was then transferred to a 

1-liter volumetric flask. The volumetric flask was then filled to the 1L mark with deionized 

water to give 500.6-ppm calcium stock solution. 

An amount of 29.0003 g of Lanthanum Oxide (La2O3) was weighed carefully and 

was placed in a beaker. 250 mL of concentrated hydrochloric acid (HCl) was added to the 

beaker. Because this reaction was violent, the mixture was slowly and carefully stirred 

under the hood with a stir rod to make lanthanum chloride solution. The lanthanum chloride 

solution was then transferred to a 500 mL volumetric flask. The volumetric flask was then 

filled to mark with deionized water. 

Standards were made from stock calcium to use as calibration standards at the time 

of analysis. To each 10 mL volume of calibration standard and sample 1 mL of LaCl3 was 

added14. 

Calcium was partially ionized in the nitrous oxide-acetylene flame. To suppress 

ionization, lanthanum chloride was added to the stock solution. The addition of a readily 

ionizable element such as potassium was used to overcome enhancement interference from 

other alkali metals. 
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2.2.3. PREPARATION OF IRON STANDARD SOLUTION 

An amount of 1.0032 g of iron metal was weighed using an analytical balance, was 

cleaned and was placed into a beaker. 15 mL of concentrated hydrochloric acid (HCl) was 

added, followed by 5 mL of concentrated nitric acid (HNO3) that was added to the beaker 

that contained the iron metal. Then, the beaker was covered by a watch glass. The beaker 

was warmed gently for 3 minutes to dissolve the iron and generate a solution. The solution 

was then transferred to a 1-liter volumetric flask. The volumetric flask was then filled to 

the 1-liter mark with deionized distilled water to give 1003.2-ppm iron stock solution. 

Standards were made from stock iron to use as calibration standards at the time of 

analysis. To each 10 mL volume of calibration standard and sample 1 mL of phosphoric 

acid was added. 

Iron was partially ionized in the air-acetylene flame. To suppress ionization, 

phosphoric acid was added to the stock solution. 

 

2.2.4. PREPARATION OF MAGNESIUM STANDARD SOLUTION 

An amount of 1.0159 g of magnesium metal was weighed using an analytical 

balance, was cleaned and was placed in a beaker. 15 mL of concentrated hydrochloric acid 

(HCl) was added, followed by 5 mL of concentrated nitric acid (HNO3) that was added into 

the beaker that contained the magnesium metal. Then, the beaker was covered by a watch 

glass. The beaker was warmed gently for 4 minutes to dissolve the magnesium and make 

a solution. The solution was then transferred to a 1-liter volumetric flask. The volumetric 
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flask was then filled to the 1L mark with deionized water to give 1015.9-ppm magnesium 

stock solution. 

 

2.3. LIMESTONE ROCKS 

The Standard Specific Interest Group method for analysis of limestone12 was used 

to test known limestone rock for percentages of calcium and magnesium. The results 

obtained for the known calcium rocks reflected the known values for the calcium and 

magnesium in the known limestone sample. Having determined the validating of the 

method, the method was used for the analysis of the unknown samples. 

 

2.3.1. PROCEDURE FOR LIMESTONE 

Limestone rocks were crushed by mortar and pestle. A sample of 0.5014 g of 

limestone was weighed using an analytical balance and was placed in a clean platinum 

crucible. The platinum crucible was covered by a platinum lid and was ignited for 1 hour 

at 1000C slowly at first to avoid loss by decrepitation. The ignited residue was then cooled 

in a desiccator and was weighed again. The ignited residue was transferred into a 300 mL 

porcelain casserole. 10 mL of water was added to the ignited residue and was mixed by a 

stir rod. 5 mL of concentrated hydrochloric acid (HCl) was added into the porcelain 

casserole and was gently heated to facilitate the breakdown of Si-O bond in silicate. The 

mixture was then dried for 1 hour in an electric oven at 150C. The mixture was then cooled 

at 40C for 30 minutes in the electric oven. 5 mL of concentrated hydrochloric acid was 
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added to the mixture of solid, followed by adding an amount of water equal to the 

hydrochloric acid. Then, the porcelain casserole was covered by a porcelain lid. The sand 

bath was heated. Then the porcelain casserole was placed in the sand bath and heated for 

10 minutes. The mixture was then filtered through filter paper into a 400 mL beaker and 

the residue was washed with concentrated hydrochloric acid (1:10). Next, the porcelain 

casserole and the filter paper were washed twice by hot water (about 60-90C). The mixture 

of limestone filtrate was returned into the same porcelain casserole, 10 mL of concentrated 

hydrochloric acid was added, followed by 10 mL of water that was added into the porcelain 

casserole. The mixture of limestone was placed into the electric oven and was heated for 1 

hour at 150C. The mixture was then filtered again through filter paper into a 400 mL 

beaker, and the residue was washed with concentrated hydrochloric acid (1:10). Then, the 

porcelain casserole and filter paper were washed twice by hot water (about 60-90C). The 

solution of limestone filtrate was then transferred into a clean glass Erlenmeyer flask and 

the glass Erlenmeyer flask was covered. Limestone filtrate was analyzed by atomic 

absorption spectroscopy at a specific setting to determine the percentage of calcium and 

magnesium it contained. 
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2.4. DIGESTION UNKNOWN SAMPLES (XGP1, XGP2, XGP3 AND XGP4) 

2.4.1. UNKNOWN SAMPLE (XGP1) 

The physical appearance of unknown sample XGP1 was bulky dark grayish and 

dark white with white. It had few fine rounded fragments, fine displayed concretion and 

was bulky sized, as can be seen in Figure 5. 

The unknown sample XGP1 was digested using the same procedure as was used 

for limestone. A sample XGP1 of 0.5189 g was weighed using an analytical balance and 

was transferred into a clean platinum crucible, thus obtaining the XGP1 filtrate. 

 

2.4.1.1. ANALYSIS OF XGP1 FILTRATE 

XGP1 filtrate was analyzed in three ways to obtain suitable results. In the first test 

1.00 mL of XGP1 filtrate by a volumetric pipet was transferred to a 250-mL volumetric 

flask.  The volumetric flask was then filled to the 250-mL mark with deionized water and 

was labeled sample XGP1a. The sample was analyzed using atomic absorption 

spectroscopy at specific setting to percentages of aluminum, calcium, iron and magnesium.  

In the second test, an amount of 2.00 mL of XGP1 filtrate was transferred to a 250-mL 

volumetric flask.  The volumetric flask was then filled to the 250-mL mark with deionized 

water and was labeled sample XGP1b. The sample was then analyzed using atomic 

absorption spectroscopy at a specific setting to percentages of elements. In the third test 

the whole XGP1 filtrate was analyzed using atomic absorption spectroscopy at a specific 

setting to find its percentages of elements. 
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Figure 5. XGP1 sample 

2.4.2. UNKNOWN SAMPLE (XGP2) 

 The physical appearance of unknown sample XGP2 was very bulky dark grayish, 

white and brownish. It had few fine rounded fragments, fine displayed concretion and was 

small sized, as can be seen in Figure 6. 

 The sample XGP2 was digested using a new method: Total Rock Dissolution Using 

Ammonium Bifluoride (NH4HF2) in Screw Top Teflon Vials: A New Development in 

Open-Vessel Digestion13.  

 

2.4.2.1. PROCEDURE FOR XGP2 

The sample XGP2 was ground by mortar and pestle. A sample of 0.5025 g was 

weighed using an analytical balance and was placed in a Teflon vial. A sample of 2.0014 

g of ammonium bifluoride (NH4HF2) was weighed using the analytical balance, was 

transferred into the Teflon vial and the vial was covered by a cap. The vial was heated at 
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230C for 3 hours in an electric oven. 2 mL of nitric acid was added into the vial. Then, 

the vial was capped and was heated on a hot plate at 160C for 1 hour. The vial was then 

cooled about 2 hours in a desiccator. The vial was then opened and was evaporated to dry 

at 160C. 1.00 mL of nitric acid and 1.00 mL of deionized distilled water was added to the 

final residue. The vial was recapped and was heated at 120C for 6 hours in the electric 

oven. The final residue was transferred to a 100 mL polyethylene bottle. 2% (2:98) of nitric 

acid was added to the total mark. The final solution was then analyzed using atomic 

absorption spectroscopy to find the percentages of elements such as aluminum, calcium, 

iron and magnesium. 

 

Figure 6. XGP2 sample 

2.4.3. UNKNOWN SAMPLE (XGP3) 

 The physical appearance of Unknown sample XGP3 was bulky gray and white. It 

had more fine rounded fragments, fine displayed concretion and was medium sized, as can 

be seen in Figure 7. 
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The sample XGP3 was digested using the same procedure as was used for XGP2, 

thus obtaining the XGP3 filtrate. However, an amount of 0.5000 g of XGP3 was weighed 

using an analytical balance and was placed in a Teflon vial.  An amount of 2.0016 g of 

ammonium bifluoride (NH4HF2) was weighed using the analytical balance and was 

transferred to the vial. The vial was covered, thus obtaining the final solution. The final 

solution was then analyzed using atomic absorption spectroscopy to find the percentages 

of elements such as aluminum, calcium, iron and magnesium. 

 

Figure 7. XGP3 sample 

2.4.4. UNKNOWN SAMPLE (XGP4) 

 The physical appearance of Unknown sample XGP4 physical appearance was dark 

grayish and white. It had more fine rounded fragments, fine displayed concretion and was 

small sized, as can be seen in Figure 8. 

 The sample XGP4 was digested using the same procedure as was used for XGP2 

and XGP3, thus obtaining the XGP4 filtrate. However, an amount of 0.5009 g of XGP4 

was weighed using an analytical balance and was placed in a Teflon vial.  An amount of 
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2.0057 g of ammonium bifluoride (NH4HF2) was weighed using the analytical balance 

and was transferred to the vial. The vial was covered, thus obtaining the final solution. The 

final solution was then analyzed by atomic absorption spectroscopy to find the percentages 

of elements such as aluminum, calcium, iron and magnesium. 

 

 

Figure 8. XGP4 sample   
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CHAPTER III 

RESULTS AND DISCUSSION 

3.1. ALUMINUM STANDARDS CURVE 

 After the aluminum standard solution was made with 1011.3 ppm, 125.00 mL of 

aluminum standard was transferred to a 500-mL volumetric flask.  The volumetric flask 

was then filled to the 500-mL mark with potassium chloride and was labeled (C1) 252.83 

ppm of secondary stock solution aluminum. Five standards were made from the secondary 

stock solution at concentrations (C2) of: 25.28, 50.57, 75.85, 101.13 and 126.41 ppm. The 

standards were diluted with potassium chloride to yield 100 mL volumes. The standards 

were then analyzed by atomic absorption spectroscopy using the following settings15: 10 

mA of lamp current, acetylene fuel, nitrous oxide oxidant, 309.3 nm of wavelength and 0.2 

nm of slit width. The results are shown in Table 1. 
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# mL of stock 
Concentration C1 

ppm 

Concentration C2 

ppm 
Absorbance 

10.00 252.83 25.28 0.065 

20.00 252.83 50.57 0.143 

30.00 252.83 75.85 0.208 

40.00 252.83 101.13 0.271 

50.00 252.83 126.41 0.318 

Table 1. Absorbance readings for aluminum standards 

The fourth column for the standards that were prepared gave absorbance readings, 

which were plotted, and the standard curve, shown in Figure 9, generated the linear 

relationship and the molar extinction coefficient to be applied using the Beer-Lambert Law.  

The data had a correlation coefficient of 0.99253, as shown in Figure 9. 

 

 

Figure 9. Aluminum standards curve 
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3.2. CALCIUM STANDARDS CURVE 

After the calcium standard solution was made with 500.6 ppm, 5.00 mL of calcium 

standard was transferred to a 1000-mL volumetric flask.  The volumetric flask was then 

filled to the 1000-mL mark with lanthanum chloride and was labeled (C1) 2.50 ppm of 

secondary stock solution calcium. Four standards were made from the secondary stock 

solution at concentrations (C2) of: 0.10, 0.50, 1.00 and 1.50 ppm. The standards were 

diluted with lanthanum chloride to yield 25 mL volumes. The standards were then analyzed 

by atomic absorption spectroscopy using the following settings15: 10 mA of lamp current, 

acetylene fuel, nitrous oxide oxidant, 422.7 nm of wavelength and 0.2 nm of slit width. 

The results are shown in Table 2. 

 

# mL of stock 
Concentration C1 

ppm 

Concentration C2 

ppm 
Absorbance 

1.00 2.50 0.10 0.124 

5.00 2.50 0.50 0.148 

10.00 2.50 1.00 0.193 

15.00 2.50 1.50 0.253 

 

Table 2. Absorbance readings for calcium standards 

The fourth column for the standards that were prepared gave absorbance readings, 

which were plotted, and the standard curve, shown in Figure 10, generated the linear 
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relationship and the molar extinction coefficient to be applied using the Beer-Lambert Law.  

The data had a correlation coefficient of 0.98138, as shown in Figure 10. 

 

Figure 10. Calcium standards curve 

3.3. IRON STANDARDS CURVE 

 After the iron standard solution was made with 1003.2 ppm, 1.5 mL of iron standard 

was transferred to a 100-mL volumetric flask.  The volumetric flask was then filled to the 

100-mL mark with deionized water and was labeled (C1) 15.05 ppm of secondary stock 

solution iron. Five standards were made from the secondary stock solution at 

concentrations (C2) of: 0.60, 3.01, 6.02, 9.03 and 12.04 ppm. Amounts of 0.1, 0.5, 1, 1.5 

and 2 mL of phosphoric acid were added to the five standards respectively and were diluted 

with distilled water to yield 25 mL volumes. The standards were then analyzed by atomic 

absorption spectroscopy using the following settings15: 5 mA of lamp current, acetylene 

fuel, air oxidant, 248.3 nm of wavelength and 0.2 nm of slit width. There results are shown 

in Table 3. 
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# mL of stock 
Concentration C1 

ppm 

Concentration C2 

ppm 
Absorbance 

1.00 15.05 0.60 0.124 

5.00 15.05 3.01 0.221 

10.00 15.05 6.02 0.351 

15.00 15.05 9.03 0.522 

20.00 15.05 12.04 0.615 

 

Table 3. Absorbance readings for iron standards 

The fourth column for the standards that were prepared gave absorbance readings, 

which were plotted, and the standard curve, shown in Figure 11, generated the linear 

relationship and the molar extinction coefficient to be applied using the Beer-Lambert law.  

The data had a correlation coefficient of 0.99351, as shown in Figure 11. 

 

 

Figure 11. Iron standards curve 
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3.4. MAGNESIUM STANDARDS CURVE 

 After the magnesium standard solution was made with 1015.9 ppm, 0.50 mL of 

magnesium standard was transferred to a 500-mL volumetric flask.  The volumetric flask 

was then filled to the 500-mL mark with distilled water and was labeled (C1) 1.02 ppm of 

secondary stock solution magnesium. Six standards were made from the secondary stock 

solution at concentrations (C2) of: 0.040, 0.10, 0.20, 0.30, 0.41 and 0.51ppm. The standards 

were diluted with distilled water to yield 50 mL volumes. The standards were then analyzed 

by atomic absorption spectroscopy using the following settings15: 4 mA of lamp current, 

acetylene fuel, air oxidant, 285.2 nm of wavelength and 0.2 nm of slit width. The results 

are shown in Table 4. 

# mL of stock 
Concentration C1 

ppm 

Concentration C2 

ppm 
Absorbance 

2.00 1.02 0.04 0.168 

5.00 1.02 0.10 0.229 

10.00 1.02 0.20 0.378 

15.00 1.02 0.30 0.470 

20.00 1.02 0.41 0.572 

25.00 1.02 0.51 0.930 

 

Table 4. Absorbance readings for magnesium 
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The fourth column for the standards that were prepared gave absorbance readings, 

which were plotted, and the standard curve, shown in Figure 12, generated the linear 

relationship and the molar extinction coefficient to be applied using the Beer-Lambert law.  

The data had a correlation coefficient of 0.93205, as shown in Figure 12. 

 

Figure 12. Magnesium standards curve 

3.5. ESTIMATED UNCERTAINTY VALUES16 

 Slopes (m) and intercepts (c) of all elements in the standards’ curves were used to 

calculate the uncertainty in the ppm concentrations of XGP parent samples. The calibration 

line is given by the equation below.  As can be seen in Figure 13, the equation was used to 

calculate the uncertainty values for Xo (ppm).  The results are tabulated in Table 5. 

 

Figure 13. The calibration line equation 
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 Al Fe Ca Mg 

     

Slope, m 0.0025 0.0925 0.0444 1.503 

Intercept, c -0.0108 -0.1080 -0.094 -0.0721 

Measured y-values, yo (Absorbance values)     

XGP1 0.006 0.428 0.438 0.167 

XGP2 0.012 0.655 0.476 0.778 

XGP3 0.014 0.492 0.429 0.311 

XGP4 0.010 0.387 0.487 0.369 

Mean Y-values, yo (Absorbance values) 0.011 0.491 0.458 0.406 

Calculated x-values, xo (ppm) 8.520 6.470 12.419 0.318 

Standard Error of Regerssion, Seyx 0.010 0.009 0.019 0.080 

No of y-readings, k (unknown) 4 4 4 4 

No of calibration readings, n 5 4 5 6 

Mean of y-values, y-bar 0.201 0.180 0.367 0.458 

Sample variance of x-values, s^2 1598.012 0.370 20.916 0.031 

Estimated uncertainty, u(xo) (ppm) 4.681 0.335 0.302 0.035 

Estimated uncertainty, 95% CI 2.694 0.072 0.286 0.034 

 

Table 5. Calculated uncertainty values in X 

3.6. PERCENTAGES OF ELEMENTS IN LIMESTONE 

 The percentages of calcium and magnesium in the limestone sample used in this 

study were determined using the dissolution/digestion method developed in this work.  The 

results are shown Table 6. 

 

Sample Percentage of Ca Percentage of Mg 

Limestone 25.75 0.0134 
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Table 6. Percentages of calcium and magnesium in limestone 

 The experimental values of the percentages of Ca and Mg obtained in this study are 

in agreement with the values obtained from the limestone samples purchased from Thorn 

Smith (sample number 115, 1967 Series), where it was determined that the percentages of 

calcium and magnesium are 29.36 and 0.0, respectively.  This supports the efficacy of the 

method developed in this work as a valid procedure for the analysis of the chemical 

composition of sedimentary rocks. 

 

3.7. PERCENTAGES OF ELEMENTS IN UNKNOWN SAMPLES (XGP1, XGP2, 

XGP3 AND XGP4) 

An amount of 1mL of solution unknown samples XGP1, XGP2, XGP3 and XGP4 

were transferred to 5-mL volumetric flasks. The volumetric flasks were then filled to the 

5-mL with distilled water and were labeled XGP1, XGP2, XGP3 and XGP4. The diluted 

unknown samples were analyzed by atomic absorption spectroscopy at specific settings 

that were related to each element, as shown in Table 7. Aluminum was not detected in any 

of the diluted samples and iron was not detected in XGP1, XGP2 and XGP3 but was 

detected in XGP4. 
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Unknown 

sample 

Absorbance of 

dilute sample 

of Al 

Absorbance of 

dilute sample 

of Ca 

Absorbance of 

dilute sample 

of Fe 

Absorbance of 

dilute sample 

of Mg 

XGP1 Not detectable 0.428 0.438 0.167 

XGP2 Not detectable 0.655 0.476 0.778 

XGP3 Not detectable 0.492 0.429 0.311 

XGP4 Not detectable 0.387 0.487 0.369 

Table 7. Absorbance readings of dilutes samples 

 Table 8 shows the absorbance readings of unknown filtrate samples XGP1, XGP2, 

XGP3 and XGP4. The unknown filtrate samples were detected for elements such as Al, 

Ca, Fe and Mg in XGP1, XGP2, XGP3 and XGP4 except for the iron, which was not 

detected in XGP1. 

 

Unknown 

sample 

Absorbance of 

Al 

Absorbance of 

Ca 

Absorbance of 

Fe 

Absorbance of 

Mg 

XGP1 0.006 2.983 6.654 0.997 

XGP2 0.012 3.119 7.220 1.959 

XGP3 0.014 3.099 6.454 1.909 

XGP4 0.010 3.108 7.284 1.825 

Table 8. Calculated absorbance of filtrate unknown samples 
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 From the absorbance readings of unknown samples and the equations of each 

element of standards curves the percentages of each element were calculated, as shown in 

Table 9. These results will be later compared with other studies. 

 

Unknown 

sample 

Percentage of 

Al 

Percentage of 

Ca 

Percentage of 

Fe 

Percentage of 

Mg 

XGP1 0.0000925 0.267 2.271 0.00494 

XGP2 0.000180 0.443 2.251 0.0357 

XGP3 0.000210 0.312 2.211 0.0121 

XGP4 0.000150 0.226 2.594 0.0150 

Table 9. The percentages of elements in unknown samples 

Table 10 shows the converted percentages of elements to milliequivalents per 100g 

that were in the unknown samples. These results will be compared with soil samples 

analysis from Oklahoma. 
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Unknown 

sample 

Percentage of 

Al (meq per 

100 g) 

Percentage of 

Ca (meq per 

100 g) 

Percentage of 

Fe (meq per 

100 g) 

Percentage of 

Mg (meq per 

100 g) 

XGP1 0.01 13.4 50.73 0.412 

XGP2 0.02 22.2 56.33 2.975 

XGP3 0.023 15.6 49.40 1.008 

XGP4 0.017 11.3 57.95 1.250 

Table 10. The percentages of elements (meq per 100 g) 

 The soils samples analysis from Oklahoma by Dennis17, Parsons17, Zaneis18 and 

Kingfisher18 were developed in sedimentary rocks and were taken from different counties 

in Oklahoma. The depths in their studies were drilled between 40-90 inches. Samples in 

this study are obtained from sedimentary rocks and are taken at comparable depths. The 

second and third columns for the percentages of calcium and magnesium show that the 

values of their studies19 are consistent with the values of this study undertaken by 

Alhawdar, as shown in Table 11. Although their samples were dissolved with hydrogen 

peroxide (H2O2) to remove organic content, these samples in this study were dissolved with 

ammonium bifluoride (NH4HF2) and nitric acid (HNO3). To further contrast methods, their 

samples were analyzed using Beckman DU flame spectrophotometers with photomultiplier 

attachment but samples in this study were analyzed using atomic absorption spectroscopy.  
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Study 
Percentage of Ca 

(meq per 100 g) 

Percentage of Mg 

(meq per 100 g) 

Dennis 14.5 5.9 

Parsons 9.7 4.8 

Zaneis 5.4 5.1 

Kingfisher 4.3 6.5 

Alhawdar 

 
 

XGP1 

 
13.4 0.412 

XGP2 22.2 2.975 

XGP3 15.6 1.008 

XGP4 11.3 1.250 

Table 11. Comparison of results of this study with literature values 

The percentages of different samples in igneous rocks by Bernas20 are shown in 

Table 12. To compare the methods in Bernas and Alhawdar’s studies, both their samples 

were analyzed using the same instrument that atomic absorption spectroscopy. Bernas’ 

samples were dissolved with hydrofluoric acid (HF) and vessels made of Teflon were used. 

The samples in this study, in contrast, were dissolved with ammonium bifluoride (NH4HF2) 

and nitric acid (HNO3) and Teflon vials were used. Although Bernas’ samples were 

developed in igneous rocks and the samples in this study were developed in sedimentary 
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rocks, the second, third, fourth and fifth columns for the percentages of elements in 

different samples show the values of Bernas’ study are consistent with the values of the 

study undertaken by Alhawdar in Table 9. 

 

Samples 
Percentage of 

Al 

Percentage of 

Ca 

Percentage of 

Fe 

Percentage of 

Mg 

Granite 7.67 0.98 1.32 0.24 

Diabase 7.84 7.60 7.52 3.84 

Australite 6.08 1.84 3.83 0.92 

Philippinite 7.08 2.10 3.65 1.42 

Table 12. Percentages of elements in silicates 

The percentages of different samples in clay minerals21 are shown in Table 11. In 

their studies, the samples of clay minerals in rocks were recovered from the Trans-Atlantic 

Geotraverse hydrothermal mound. The samples were gathered between 15 and 121 meters 

below the seafloor from various areas of the Trans-Atlantic Geotraverse mound. 

Comparing the percentages of unknown samples in Table 9 in this study with the 

percentages of clay minerals in Table 13 in their studies shows different percentages 

because of different locations and compositions. 
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Sample 
Percentage of 

Al 

Percentage of 

Ca 

Percentage of 

Fe 

Percentage of 

Mg 

9R-1, 67-71 16.11 2.62 13.25 8.59 

10R-1, 79-74 15.41 8.90 12.75 9.88 

10R-2, 11-14 17.78 4.62 19.24 10.63 

Table 13. Percentages of elements in clay minerals 

The purpose of the studies of Dennis, Parsons, Zaneis and Kingfisher was to 

determine amounts and kinds of clays present in Oklahoma soils. Their analysis suggested 

which plants could grow according to location. Their analysis also suggested amounts of 

fertilizer – as well as chemical composition – that could be used to maximize crop 

production, given the geochemical structure of soil found at various locations.  

The purpose of Bernas’ study was to develop a comprehensive and simple 

analytical scheme for determining all the major and minor constituents in silicates by 

atomic absorption spectrometry. It was important to investigate and develop an 

environment that would prevent contamination and at the same time prove advantageous 

when applied to atomic absorption measurements. 

The objective of their studies21 was to determine clay minerals and chemical 

composition from different areas in the Trans-Atlantic Geotraverse mound. Also, it was to 

investigate rocks and determine if there was a correlation between secondary silicate 

mineralogy and selected heavy metal concentrations and more.  
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