
Pittsburg State University Pittsburg State University

Pittsburg State University Digital Commons Pittsburg State University Digital Commons

Problems, 1950-1991 College of Education

5-1-1974

An Approach to the Problem of Computer Simulations in Business An Approach to the Problem of Computer Simulations in Business

Judith Miller
Kansas State College of Pittsburg

Follow this and additional works at: https://digitalcommons.pittstate.edu/problems

 Part of the Business Commons

Recommended Citation Recommended Citation
Miller, Judith, "An Approach to the Problem of Computer Simulations in Business" (1974). Problems,
1950-1991. 21.
https://digitalcommons.pittstate.edu/problems/21

This Graduate Research is brought to you for free and open access by the College of Education at Pittsburg State
University Digital Commons. It has been accepted for inclusion in Problems, 1950-1991 by an authorized
administrator of Pittsburg State University Digital Commons. For more information, please contact
digitalcommons@pittstate.edu.

https://digitalcommons.pittstate.edu/
https://digitalcommons.pittstate.edu/problems
https://digitalcommons.pittstate.edu/coe
https://digitalcommons.pittstate.edu/problems?utm_source=digitalcommons.pittstate.edu%2Fproblems%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/622?utm_source=digitalcommons.pittstate.edu%2Fproblems%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pittstate.edu/problems/21?utm_source=digitalcommons.pittstate.edu%2Fproblems%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@pittstate.edu

AN APPROACH TO THE PROBLEM OF

COMPUTER SIMULATIONS IN BUSINESS

A Problem Submitted to the Graduate Division in Partial

Fulfillment of the Requirements for the

Degree of Master of Science

By

Judith Miller

MAY 15 '14

, ..

KANSAS STATE COLLEGE OF PITTSBURG
i - .,.

Pittsburg, Kansas

May, 1974

ACKNOWLEDGEMENTS

Sincere appreciation is expressed to Dr. Darrell Wiener,

Problem Advisor, who made this research problem worthwhile

and educational.

Sincere appreciation and many thanks are due my

mother, Virginia, and my brother, Doug, for their patience,

ncouragement, and faith that made this endeavor possible.

, .

•

ii

TABLE OF CONTENTS

CHAPTER

I. NATURE OF THE PROBLEM ••• . . . ~
PAGE

1

1
2
3
3
4
6
7
8

Introduction . • . • •• . ~ •
S atement of the Problem • • .
Purposes of Study . . • .
Hypothesis of the Study . . .
Need for the Study • • • . • •
'Delimitations of the Study • • • • • •

. Limitations of the Study
Definition of Terms • -. • • • • • • . • • •

· . · . · . · . · .
· . · .

II. REVIEW OF RELATED LITERATURE · . 13

13
15
18
20

III.

IV.

Computers in Education • • • • • • •
Studies of Classroom Uses of Computers ••••
Educational Use of Simulations •••
Summary of the Chapter . • •• ••••••

ME~HOD. OF PROCEDURE .

COMPUTER SIMULATION .. .
. . .

.
21

26

Systems of Simulation • ~ • • . . . • • 28
Models of Simulation • • • • . • . . • • . 33
Building a Model of the System . • • • •• 35
Summary of t he Chapter • • •. •• • • •• 41

~v. COMPUTER TERMINALS AND BASIC 44

Development of BASIC Language and Time-Sharing
Computer Systems •.• . .

Programs and Programming Definep
BASIC Program Writing . • . • •
BASIC Language Commands . . • • • •

Input:-:Assignment Comm.ands • • • . . • • .
Output Commands • • • . . . • . .
Transfer Commands • • • • . . • .
Subroutine Commands . . • • • • • . • • .
Function Command •
Array Commands • • • • .
File Commands • • • . • • . • • ~
Miscellaneuus Commands • • • • • • .
Systems Commands ...•.•..••••

Summary of the Chapter . . • . • • . • • • • .

iii

44
46
49
54
54
58
62
67
68
69
75
77
79
82

TABLE OF CONTENTS (cont.)

CHAPTER

VI. APPLICATION OF COMPUTER SIMULATION • • • •

VII. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Stunmary • • • •
Conclusions
Recommendations

BIBLIOGRAPHY

. · · . ..
to • •

· . .

iv

PAGE

. . . 85

99

• .. 99
• 101
• 105

. • 108

LIST OF FIGURES

FIGURE

1. Design of System • • • • • • • I. •

2. Design Symbols • • · . . .
3. "Flowchart Symbols

•
4. Car Demand Event Values
5. Flowchart of Model . . • • · . .
6. Computer Simulation Program

, ..

v

PAGE

38

40

48

90

92

95

CHAPTER I

NATURE OF THE PROBLEM

Introduction

Computer terminals in business are becoming

increasingly popular. By ~ lling prestored programs from

t he computer memory and feeding necessary data from a

terminal device in their offices, modern executives have

been able to make better use of quantitative techniques in

the decision-making process.

The desk-like termdnals provide executives direct

access to information files of their companies and to

computerized analysis of current operations. Gupta pointed

out that the broad applications of terminal processing has

allowed the executive greater control without stretching

his span of management. If students in business courses

are pre-exposed to this type of computer processing, it

will undoubtedly add enrichment to their future careers

in the world of business. l

Computer simulations are currently being used in

business, industry, and government. Business executives

lRoger Gupta, Electronic Information Processing (New
York: The Macmillan Company, 1971), pp. 243-44.

1

2

have used models of s ys tems to evaluate decisions regarding

price, product line, advertising, and marketing. These

are but a few of the potential uses of computer simu-

lations for business.

The use of computer simulations for the college

classroom has been limited even though they are easy to

implement. College use of the computer has been confined

to problem-solving for research and doing administrative

work.

The learning and instructional advantages of using

computer simulations in the college business classroom are

many. According to Loschetter, some of the most important

advantages are: (1) it can eliminate the artificial

classroom environment and put the business student in an

imitation of the business, enviror~ental, and social

conditions of the real world, and (2) it gives the business

student an i.nsight into the importance and usefulness of

the computer as a tool in the decision-rr~king process. 2

Statement of the Problem

The problem of the study was to determine the

feasibility of using computer terminals for computer

simulations and the BASIC language program to build the

2Richard Loschetter, "The Computer In The Business
Classroom," Colleg i ate News and Views, xx.v (Winter, 1971),
19.

3

models of systems in the design process of computer

simulation.

Purposes of Study

The purposes of the study were to (1) assemble

information that describes the fundamental concepts and '

development of computer simulation and models of systems,

(2) assemble information that describes computer terminals

and the BASIC programming language, (3) write a computer

terminal program that would perform a computer simulation

to solve a problem for a system, and (4) show one

application of computer terminals for the business student

to use as an instructional aid in the classroom.

Hypothesis _of the Study

1. A computer terminal program can be written to perform

a computer simulation to solve a simple business

system problem.

2. The application of system simulation and the computer

terminal will be a useful aid to the business student

in his class work.

3. Students in business can understand and need to learn

to use computer terminals.

4. Business students will become more familiar with data

processing during their educational years in college.

4

5. Business students will be able to relate better the

uses and services of data processing to their future

careers in the field of business.

Need for the Study

A new computer became available at Kansas State College

of Pittsburg in the spring of 1974. The computer has

terminals located at different points on campus for use by

students i n their college classes or any part of their

education. The expressed purpose and hope of the faculty

and the Data Processing personnel were that the terminals

would be of benefit and would be used frequently to serve

the needs of all students on campus. Thus, it was important

that many uses for the terminals be found and defined, and

aids be made available to help the students use the

computer terminals.

College students have been observed to be shy and

unaware of the uses of data processing in their education.

Yet, it is important they have contact with data processing

during these years so that they can and will use it later

in their careers.

Loschetter, in his article, "The Computer In The

Business Classroom," made the following comment:

With the introduction of the computer on
college campuses, a new and exciting instructional
tool became available to educators. To date

5

outside of the data processing and computer science
areas, little use has been made of this device as
an ins t ructional aid. 3

In an article, "The Collegiate Business School Today,"

McGuire gave some interesting views of the past t ends in

busi schools and five i portant ways he felt business

education should move in the future. McGuire summarized

these future steps as: (1) recapture a real world concern;

(2) emphasize administration; (3) use more quantification

and computerization methods; (4) have more studies in

leadership, organization, motivation, and creativity; and

(5) have more emphasis on management. He saw a new

approach in business schools emerging that stressed

economics, computers, behavioral sciences, and mathematics.

He felt, though J that students were not using or did not

know how to apply the tools in these areas to business, and

that there was a definite gap that needed to be filled. In

the past the schools had moved away from the business world

and on to the campus. A real need existed for colleges

to change this trend. 4

The use of terminals connected to a central computer

was a further extension of the computer. Problem-solving

in mathematics, statistics, and other sciences can be fun

3Ibid., pp. 19-22.

4Joseph W. McGuire, "The Collegiate Business School
Today," Collegiate News and Views, XXV (Spring, 1972), 1-5.

6

and-educational when completed on the computer terminals.

Students can utilize their time more effectively with the

use of the computer. The researcher has seen and continues

t see many ways that computers can be of value to students

in the field of business. It is evident, though, that

students must be given an initial introduction to computer

terminals in their classes and also be given some aids

tha t would give them direction in its possible application

and use. This study showed the application of a computer

simulation for solving a business problem that served to

introduce business students to the value of computer

terminal processing in their education and future careers.

Delimitations of the Study

The delimitations of this study were developed from

two distinct categories. They were those involving the

computer terminal and those that were related to models of

systems for computer simulations.

The fi' st delimitation was that the problem was written

for specific computer terminal equipment, 'IBM's System 370

Interactive Te~inal Facility. The simulation program was

written in the BASIC computer terminal language for use on

this specific type of computer equipment. Some programming

modificatiollS would need to be made if this simulation

program were to be used at other data processing instal­

lations if different equipment re used.

8

terminals as an aid in classroom work. The business

student would have to devote additional time to acquire a

knowledge in writing BASIC computer terminal programs to

take advantage of this application of the computer terminal

in his classroom work. The business student would also

have to understand the concepts of simulation and building

models of systems.

Another l imi ation was that the simulation program was

not tested on the computer terminal equipment. The IBM

computer terminal equipment for the KSCP Data Processing

Center was not available at the time of the completion of

this study.

A final limitation was that the researcher was aware

that there existed special computer languages to build

models of systems for simulations and the BASIC computer

language and the computer terminal may limit the extent

of the use of this type of appl·cation.

Definitions of Terms

The definition of terms was important in this study

because the reader should have a working knowledge of these

terms to effectively understand the paper. They were not

intended, though, to be as technically defined as those

that would be needed by persons working in the fields of

data processing or simulation. The terms were also listed

9

in two categories, one for data processing and one for

simulation, for easier reference.

The following data processing terms were defined:

Alphanumeric: Alphanumeric characters are those characters
that consist of alphabetic letters, numeric digits,
and special characters such as $, %, and *.

codin~: The process of writing the programming statements
or a specific problem is called coding.

Data: Information to be processed by the computer is
referred to as data.

~ Data Processing: The term, data processing, is used to
describe operations performed by auto t ic equipment.

Diagnostic: An error message typed on the terminal indi­
cating a specific problem with a program or data is
called a diagnostic.

Documentation: The process of documentation means identi­
fying and organizing all of the relevant information
concerning a specific program. s

Field: The term, field, refers to a group of related
characters of data or information.

File: A group of related records of data or information
---- is known as a file.

Fixed-point nm ber: Fixed-point numbers are those numbers
in which the decimal has an exact position.

Flowchart: A flowchart is a pictorial diagram that shows
the logical flow of data or operations necessary to
solve a particular problem.

Input device: A device used to transmit information to the
computer is known as an input device.

Instruction: A group of combined characters and symbols
recognized by the computer as an order to perform a
specific operation is an instruction. 6

se. Joseph Sass, Basic Programming for Business (Boston:
Allyn and Bacon, Inc., 1972), p. 288.

6Ibid., p. 289.

\/

10

Integer: An integer is a whole number that does not contain
any fractional part.

Loop: A group' of statements executed a number of times
within a program is known as a loop.

Matrix: An ordered array or two-dimensional table is
referred to as a matrix.

Output device: The device that accepts information trans­
Omitted from the computer is called the output device.

Program: A logical sequence of steps and statements to be
performed by the computer in .,order to solve a
specified problem is referred to as a program. i

Storage: Storage is the part of the computer where program
~nformation is retained, normally called the memory
unit.

Terminal: An inp~t/output device enabling the user to
interact di7ectly with the c mputer system is called
a terminal.

Test data: Test data is that data especially created to
facilitat7 easy che .k-out of a program to determine if
errors eX1st. 8

Variable: The name assigned to a location within the
computer, whose value may change during the execution
of a progr am f is a variable.

The following simulation terms w~re defined:

v Analysis of system: The analysis of system means to analyze
the behavior of the system by observation of the
inputs anu outputs and by explanation of the trans­
formation of the inputs to outputs of the system.

Attributes: Attributes refer to the characteristics that
define and describe an entity.

Closed s¥stem: Closed systems are those systems where all
ent~ty attribute values are defined and changed by
events within the system.

Continuous simulation: A simulation in which time moves as
in the real world is known as a continuous simulation.

7I bid., p. 292. 8Ibid.

,j

11

Design of system: The process of putting the components or
elements of a system together is called the design of
system.

Deterministic model: A deterministic model is one which
does not have any: uncertainty, future states can be
predicted with reasonable accuracy.

Discrete simulation: A simulation in which time changes
only periodically is known as a discrete simulation.

Entity: An entity is defined as a physical or abstract
objec~ that ~auses an activity in a system.

Environment: Objects outside the control of the defined
system of a simulation are referred to as the environ­
ment.

Event: The occurrence of an activity in a system is known
as an event.

Mod 1: A model is an abstraction, simplification, or
idealization of a system in the real world. ,

•
Open system: Open systems are those systems where entity

attribute values are defined or changed by events
within the system and the environment.

Probabilistic model: A probabilistic model is a model
which has uncertainty; future states are determined
by probability.

Probability: The chance that something will or will not
happen is called probability.

Probability distribution: The probability of the trequency
of an event occurring over a certain number 6f times
is known as a probability distribution.

Random number: A rantlom n\unber means the appearance of
this one number does ' not dictate the appearance of
the next number.

Simulation: A representation of a part of the real world
is referred to as a simulation.

State: A state is defined as a point in time uring a
simulation in which the value of the system can be
evaluated.

12

System: A set of objects together with re lationships
between the objects and between characteristics of
the objects is called a system.

Syst mvariable: An entity attribute value that is changed
through time by the system is known as a system
variable.

•

r

CHAPTER II

REVIEW OF RELATED LITERATURE

The literature reviewed for this research showed the

extent to which computers and computer terminals were

being used in education and the extent to which simulation

was becoming a part of the curriculum. References were

found that illustrated the use of computers and the use

of simulation in classroom, but articles on the use of

computer terminals for s imulation applications were not

found.

Computers in Education

The manner and rapidity with which computers were

changing the education processes necessitated the discus­

sion of this area first as it related to this problem.

The applications possible for education today via

computers affected many of the thought processes and ways

of doing things. Computer technology has brought about

many changes in the field of education within the past

decade. This time span was short when compared to other

changes of equal importance that have taken as long as thirty

to fifty years to make as much of an impression. The

computer was viewed by many to be as important as the

13

14

printed textbook. The entry of computers into the education

process has reorganized the essential teaching and learning

techniques and has also made important and very relevant

changes in the administrative work of education, according

to Gupta. 1

Education in the area of computer processing has become

an important subject area in all institutions of higher

learning. The subject of computer programming was offered

and in some instances, may be required, in many disciplines.

Students i n business, engineering, mathematics, and science

find it an essential element in obtaining solutions to

mathematical or statistical problems in all areas of

research. Gupta pointed out that some educators considered

computer science a new discipline and rated it as important

as the long-established disciplines of mathematics, the

physical sciences, and the social sciences. 2

The use of the computer has enabled the student to

explore even greater frontiers and to learn by discovery and

research. According to Gupta, the use of the computer has

freed the student from the tedious and frustrating task of

performing complex calculations. It has increased the

number of applications the student can make in his learning

processes. 3

lRoger Gupta, Electronic Information Processing (New
York: The Macmillan Company, 1971), p. 22.

2Ibid., p. 23. 3Ibid., p. 28.

15

Gupta concluded that in the future computers will play

a very dominant and beneficial role in education and

advanced research. The impact of the computer on the

future generations of students and, consequently, on society

was bound to be enormous. 4

Studies of Classroom Uses of Computers

A study conducted at Mayfair City College in Chicago

involved the application of computer processing in business

mathematics courses. Sutherland pointed out that after

learning the logical steps for solving a problem in

business mathematics, a considerable amount of time was

consumed in performing mathematical calculations. A more

desirous approach would have the students devote this time

instead to exploring and analyzing more problems while let­

ting the computer do the repetitive mathematical

calculations. 5

The study at Mayfair City College was concerned with

the question of whe ther the student could afford the time

in his course work to become knowledgeable about computers.

The most valuable contribution from the study was that a

student did not need to have a great deal of knowledge

4Ibid., p. 30.

5Angela Sutherland "More Problem Solving in Business
Math With the Computer,~ Journal of Business Education,
XLVI (March, 1971), 262.

16

about the computer to be able to use it as a tool. Accord­

ing to Sutherland, it was possible, in two forty-minute

sessions, to provide students with sufficient background

in the use of the computer to enable them to solve the

problems in business mathematics. The student did not

become a programmer, but learned to use only a few computer

instructions needed to perform mathematical calculations

and to store and to retrieve the material. The students

used these instructions with prepackaged routines for

handling input and output. 6

Students in the Mayfair City College study became

intrigued with the possibility of using the ~ omputer for

more sophisticated problem solving and voluntarily pursued

deeper applications of problem solving in business

matheInatics. 7

Dascher in his article, "EDP in the Elementary

Accounting Course," felt that because computer processing

in the business community was increasing, it should be a part

of the business curriculum through the use of the computer

in elementary account .: !6 courses. There were many

accounting applications that could be assigned to computer

processing, and the accountant did not have to be a

sophisticated programmer to be a sophisticated user of the

6Ibid. 7Ibid.

17

of the computer. The computer provided the service and

the support for information needs of accounting reports. 8

Computer Supplemented Instruction, a design developed

by Dascher was used to bring accounting course work and

computers together. This type of instruction was a method

which provided student usage of the computer without the

technical involvement of programming. Students used the

relatively simple data manipulation of the accounting entries

of debits and credits by using a plus-minus concept of

accounting and input was limited to a small set of control

and data cards. According to Dascher, the fact that the

computer gave immediate resul ts to students so that they

could see and correct errors,' lessons were more quickly

lea~ed. The use of this type of instruction also provided

some basic computer exposure to the business student. 9

In an article by Perritt entitled, "Innovations in an

Elementary Accounting Program," he discussed some of the

new innovations made at Northern Illinois University in

the accounting program. The business department had been

faced in recent years with enrollment increases in the

accounting classes; hence, new methods of instruction

and/or teaching aids had to be developed. One of the

solutions to this dilemma was the use of the computer. The

8Paul E. Dascher, "EDP in the Elementary Accounting
Course," Collegiate News and Views, XXVI (Winter, 1972-73),
11-12.

9Ibido, pp. 12-15.

20

new dimension in learning. Students lea.rned subject matter

and basic computer concepts in an exciting and novel

environment. The study concluded that the simulation

exercises on the college campus had given a new and worth­

while tool to educators. 1S

Surrrnary of the Chapter

Many articles were found on the importance of computers
:.

in education and on many levels of education:~ The articles

showed an increasing amount of use of computers in business

courses at the college and university level.

The computer was an important addition to a variety of

instructional techniques in the business classroom. ' The

bu~iness instrhctor using the computer as a tool did not

need to b an expert in data processing.) Through the use

of the computer, interaction and communication among

students, teachers, and data processing personnel increased

and made such use very worthwhile. The ability of the

computer to respond quickly to input brought eager interest

among the users. The action involved in oper.ating a key

punch and other input devices stimulated the interest of

those students who learn best by physical action. Most

had viewed their experiences with the computer in the

classroom as successful.

lSrbid., p. 21.

CHAPTER III

METHOD OF PROCEDURE

The method of procedure was best explained by defining

and discussing the three major divisions or areas used as

resources for this problem. Each of the areas contributed

valuable knowledge and essential parts for the docurnentary­

descriptive method used for the problem.

Library research was conducted at Porter Library,

Kansas State Col lege of Pittsburg, and the Computer Center

Library at the Kansas State College of Pittsburg. The

second area of resource materials came from interviews with

IBM computer manufacturer representatives and KSCP Data

Processing staff members. Prior education and prior work

experience of the researcher made up the third division of

resource material for the problem. "

Porter Library at KSCP was used as a source of infor­

mation for books that described the background and the

concepts of simulation, computer simulations, systems, and

the processes for building models of systems. This material

led to needed material on analysis of systems and design of

systems.

The KSCP Computer Center Library had manuals,

periodicals, and books that furnished documents on computers,

21

22

computer terminals, and programming. These references gave

background, definitions, types, and uses of data processing

in all fields of education as well as business, industry,

and government.

Interviews were conducted with IBM representatives

about the IBM System/370 Computer and its time-sharing

system referred to as the Interactive Terminal Facility.

Resource material was also gathered by writing to IBM for

manuals describing the computer terminals and the BASIC

progranuning language . /

\ Interviews were conducted with the members of KSCP

Data Processing staff on the new computer, IBM System/370,

and the new computer terminals. In addition, the expected

uses of these terminals for the college were discussed.

As the final step, the program application written for this

problem was checked by the KSCP Data Processing Center

head progranuner for accuracy.)

The educational background arid the experience as a

computer programmer at KSCP contributed information on

computers, computer terminal processing, and the BASIC

programming language to the study. Visits were made to the

University of Kansas Medical Center to see and to use their

computer terminals. The computer terminals were a part of

an IBM time-sharing system and the BASIC prog amming

language was available for users. The personnel at the

University of Kansas Medical Center explained the way in

23

which they use the computer terminals and the BASIC language

programs written by the users. '·. A trip was made to the

Southwest Missouri State College campus, Springfield,

to view and to work on their computer terminals and to talk

to the staff of the computer center about the use of

terminals by the students. The time-sharing system used at

Southwest Missouri State College was also an IBM product

using the BASIC programming language.

Knowledge of the researcher, acquired through classes

on simulation was a valuable reference for the problem. The

researcher studied the special simulation computer program-

ming languages that exist to build models of systems and

for computer simulations. The study of these languages was

a necessity in understanding computer simulation and

finally in using the BASIC language in the process of

building models for a computer simulation. I

Special simulati.on languages were computer prograrrnning

languages desig 1ed especially for simulation and nothing else.

Many systems had several basic characteristics in common and

a wide variety of simulations therefore had programming

tasks in common. Simulations were simplified with the

preprogrammed routines of these languages. ' Programmed --- ~

routin e s performed tasks such as time keeping and statis­

tical analysis, and provided certain tools such as random

number generators and report generators. When complex

\ .

v

24

systems were involved in a simulation, special simulation

languages became vital.

/ The GPSS language (General Purpose Systems Simulator)

was studied and was found best suited for simulations of

systems based on queuing concepts. The SIMSCRIPT language

was also studied and was important for systems with discrete

time keeping tasks. SIMSCRIPT was similar to the FORTRAN

language used mostly for mathematical applications. Books

describing computer simulation and building models of

systems with the FORTRAN language were also reviewed.

When using the special simulation languages, analysis

of system was still required for computer simulation. The

language aided in the design of system with a general

structure for the model of the system and routines for the

computer simulation algorithm steps.

The final step in the method of procedure was the selec­

tion of a business system problem for a computer simulation.

The two processes, analysis of system, and design of system,

for simulation were applied to the business system. The

BASIC programming language was used for the design of the

model of the system and the simulation.

After the resource material was collected, the back­

ground and the definition of both simulation and computer

simulation were reviewed and described in Chapter IV. The

definitions of simulation varied in the resource material

and these definitions were explained. In simulation, it was

25

imp rtant to explain the meanings of system and model, for

all computer simulation applications require a system and a

model. The two processes, analysis of system and design of

system, were given as further information related to a

description of computer simulation.

In Chapter V, the research completed for the

time-sharing computer systems and the BASIC programming

language was discussed. The definition of a computer

program and the steps followed in writing computer programs

were included in the chapter. Important and fundamental

concepts of the BASIC programming language with examples of

BASIC programming statements served to explain this resource

material. A brief review of the history of computer

terminals, time-sharing computer systems, and the BASIC

programming language introduced that chapter.

This was followed by Chapter VI in which a description

of the result of the problem and the study of the computer

terminal and the BASIC programming language and simulation

were presented. The application pf a business system

simulation for a computer terminal was explained. The steps

used in the analysis of the system and the desi~ of the
".. ~

system were gi n. The BASIC language program for the model

of th system and the flowchart of the design of the syst·em

were shown in that chapter.

\ The summary, conclusions, and recommendations of the

research study were presented in Chapter VII.

27

with the cost of computation decreasing and becoming more

economical. 2

Computer simulation provided an effective means of

testing and evaluating alternatives for proposed systems

without affecting the real system. In the IBM: GPSS IV

Manual, it was pointed out that several hours, days, weeks,

or even years of operation of a system could be simulated

in a matter of minutes on a computer. Simulation was not a

precise likeness of the system, but rather a symbolic

representation of the system. The simulation could not pro­

vide optimal solutions, but it did yield very useful

insights into the behavior of very complex systems. It

provided measurements which would be impossible to obtain

in any other way. 3

Business simulation as defined by McMillan and Gonzalez

meant setting up for a digital computer, mathematical

expressions and equations that describe a business system

based on the description and assumptions about the business

operation. The simulation then provided a method to test

different management policies and market situations to

determine their effect on the company success. Simulation

2Forrest Paul Wyman, Simulation Modeling: A Guide to
Using SIMSCRIPT (New York: John Wiley and Sons, Inc., 1970),
p. 1.

3IBM: GSPP IV Manual (New York: International Business
Machines Corporation Programming Publications, 1971), p. 1.

28

allowed experiments to be conducted for a system without

affecting the real system. 4

Systems of Simulation

The most important concept in the simulation process

was the "System." The system was defined for every form

of research and learning, and it also had a special meaning

in simulation. In simulation a system was referred to as

a set of objects together with the relationships between

the objects and between the characteristics of the objects.

The objects were lIed entities and the characteristics of

the objects were called attributes in simulation.

The kinds of entities in business systems were limit­

less. They could be physical objects such as machines, raw

materials, finished products, clerks, and machine operators

or they could be abstract objects such as profit goals,

sales quotas, production standards, or costs. The objects

or entities of the systems performed activities or changed

their behavior at points in time * The activity or behav­

ioral change of an entity of the system was referred to as

an event.

Entities were described by defining their attributes.

The attributes were characteristics or properties of the

entities. For example, if machine was an entity of the

4McMilian and Gonzalez, Systems Analysis, p. 26.

29

system, the attributes could be price, weight, speed, cost

of operation, or production rate. Another entity example

for a system, inventory item, might have attributes such as

quantity on hand, cost of storing units, or number of units

used last year. There were also an endless number of

attributes that could be used to describe an entity.

McMillan and Gonzalez in the book, Systems Analysis, A

Computer Approach to Decision Models, indicated that both

entities and attributes must be limited to t h se most

important for a specific simulation. S

Entities and attributes of a system were tied together

by their relationships. These relationships tied the

system together and if it were not for these relationships,

the term, system, would be meaningless. The relationships

that could be defined were endless and only the ones

important for the specific simulation were defined in the

analysis. According to McMillan and Gonzalez, they should

be limited to those that had an important effect on the way

the system behaved when it underwent change. An example of

a relationshi used in a business system simulation would

be sales volume and advertising expenditure. 6

After a system was defined by its entities, attributes,

and relationships, it was necessary to identify the environ­

ment of the system. McMillan and Gonzalez stated that the

SIbid. 6Ibid., p. 2.

30

environment was defined as the set of all objects that, when

there was a behavioral change in the objects, it affected

the defined system. Behavioral changes of entities in the

defined system could in turn affect the environment

entities. 7

To separate the objects of a system from the objects

of its envtronment was difficult. McMillan and Gonzalez

suggested that one way to distinguish between them was to

consider whether or not the activity or behavioral change

of an object was influenced or subject to management

control. Customers, banks, unions, venders, competitors,

or the economy were examples of objects beyond management

control and could be objects of the environment of a system. 8

Systemsould be divided into subsystems, and the

entities of the total system could be members of s veral of

the subsystems. McMillan and Gonzalez pointed out that the

subsystems could be studied separately or as a whole of the

total system. The study of subsystems involved a study of

the microscopic behavior of a system. The study of a total

system was a study of the macroscopic behavior of a

system. 9

Systems were classified into closed and open systems.

An open system meant there was an exchange of activities

7Ibid.

9Ibid., p. 3.

8Ibid.

31

or information with the environment of the system. A

closed system would have no exchange of such activities or

information.

A system was described by its "state. 1t In the simu­

lation process, the entity attributes of a system took on

different values at different points in time. At anyone

point in time in the simulation process, the state of the

system was the current value of the entity attributes of

the system. In describing the system state, a list was

made of the values of the attributes of the entities to

determine the specific system state.

The state of the system was either stable or unstable.

If the values of the attributes of the entities remained

constant or within defined limits in each system state

evaluation, the system was considered to remain stable,

according to McMillan and Gonzalez. In contrast, an

unstable system would be one that would have different

entity attribute values in each system state. IO

The system was in equilibrium when there was an absence

of external activity with the system. l'1cHilian and Gonzalez

pointed out that when a system was exposed to external

activity and its state was changed only temporarily and

equilibrium was obtained again, it was classified as stable.

lOIbid., p. 5.

32

If the system state was never returned to equilibrium the

system was referred to as unstable.ll

The term, information feedback system, wa s also used

in simulation. According to McMillan and Gonzalez, it

referred to systems in which a portion of the output of the

system was used to influence future states of the system.

The feedback into the system controlled future decisions

made in the system. 12

System entity attributes that took on different values

for different states of the system were called system

variables or state variables. The value of these variables

were generated by the system and depended on what happened

earlier in the system. System entity attributes that

remained constant were called parameters. The values did

not change during a simulation of the system. McMillan

and Gonzalez indicated that initial values must be given

for both system variables and parameters, but the system

variables would take on different values depending on the

relationships evaluated in the simulation of the system.

An example of this differentiation could be explained with

the entity machine. The attribute production rate for the

entity machine would be a system variable and the attribute

cost of the machine would be a parameter. 13

llIbid., p. 4.

13Ibid., pp. 31-32.

l2 I bid., p. 6.

33

Random variables were also characteristic for many

business systems and this meant that there was uncertainty

in the input values to the system. The random variables

caused many successive changes in the system. Another

characteristic for the systems was the fact that the rela­

tionships of the entities and attributes of the system were

not well behaved. It was difficult to trace down an exact

or general relationship for different states of the system.

The typical systems that were processed on the computer

were very complex. McMillan and Gonzalez pointed out that

this complexity meant that the systems had a large number

of entities, attributes, variables, parameters, and many

relationships and events to which the systems were

responsive. 14

Models of Simulation

Simulation methodology involved experimentations with

models of systems. There were many kinds of models for

systemsa They could be constructed from physical objects

or they could be representations in pictorial form. Flow

diagrams and organizational charts were examples of the

pictorial form. A mathematical model was another way of

representing a system. A mathematical model consisted of a

l4Ibid., p~ 26.

34

s e t of equations whose solution explained or predicted

changes in a system.

A form of mathematical model was used in computer

simulation . McMillan and Gonzalez explained that these

mathematical models were a result of analyzing and

describing a system of the real world. The abstract nature

of mathematical models made them subject to manipulation

and could give precise informat ion. Computer models were

simply defined as mathematical models expressed or written

according to a particular set of rules so that the model

could be processed by the computer. 1S

Mathematical models for simulation were subdivided into

deterministic models and probabilistic models. McMillan

and Gonzalez, in their book, Systems Analysis, A Computer

Approach to Decision Models, pointed out that if there was

an optimum design and the design was within defined and

unvarying limits, the model was deterministic. Deter­

ministic models were devoid of uncertainty, and changes of

the system state could be perfectly predicted. 16

More typically, though, models were probabilistic,

because most systems were characterized by having entity

attributes t hat took values which were the result of an

interaction of factors which were not well understood,

according to McMillan and Gonzalez. The entity attribute

lSIbid., p. 12. l6Ibid., p. 13.

35

values were determined by successive trials of stochastic

processes. A stochastic process was defined as a repetition

of experiments, the results of which were determined by

chance. If the entity attribute values of a system were

determined by stochastic process or probabilistically, the

knowledge of the system was less than perfect. When uncer­

tainty existed and future states of the system were

anticipated, subject to the probable occurrence of a

sequence of events usually in the environment, the model

was called a probabilistic model. With uncertainty more the

rule than the exception in the real world systems, most

models would be probabilistic. 17

Models of systems for computer simulation were moved

through time, so that the dynamic behavior of the systems

could be studied. In the simulation process, time began at

zero when the parameters and system variables of the model

of the system had initial values. Next, various events were

generated which caused changes to take place and which

resulted in new values for the system. Each event advanced

the model through time.

Building a Model of the System

To accomplish the goals of simulation for any system,

the elements of the system were isolated and the logical

rules governing their interaction were formulated. McMillan

l7rbid.

36

and Gonzalez stated that this gave a description of the

system called a model of the system. The model was limited

to those aspects of the system which were pertinent to the

types of answers sought i.n the simulation. 18

Two processes were necessary in the simulation of a

system: (1) analysis of system, and (2) design of system.

The technique for analysis of system had these basic steps.

Firs , the system had to be understood thoroughly and to do

this, the analyst began with observations of the system and

its events. Each part of the total system was examined

because each part interacted and had an effect on every

other part. In the book, Simulation Modeling: A Guide to

Using SIMSCRIPT, Wyman emphasized that the simulation model

builder discovered which of these interactions were signi­

ficant and which were not necessary for the model of the

system. After this observation and familiarization with

the system came the second step, the formulation of an

hypothesis, which was a possible explanation of the behavior

of the system. This hypothesis gave the goals and bound­

aries of the model of the system. Third, the analyst

separated the elements of interest of the system into

exogenous and endogenous event variables. Exogenous event

variables were t.hose which were beyond the scope or bounds

of the study; their originating causes were unknown and

l8Ibid., p. 1.

37

their behavior could only be determined by a statistical

distribution. Endogenous event variables were those f o

which cause and effect were known and which could be

controlled in the model of the system. Fourth, the analyst

defined the entities and their attributes. The choice of

entities for the model of the system was subjective and

depended on the goals of the system. Fifth, the relation­

ships between the entities were discovered and defined.

The ~. ~ relationships provided the structure of the model of

the system and were as close to reality as possible. The

resulting analysis gave an abstraction and simplification

of the system and the events. 19

Having observed the system, having specified the parts

of the problem of the system, having formulated a hypothesis,

and having defined the entities and attributes with their

relationships, the next step was to turn to the second

process, design of system. In the design of t h model of

the system, McMillan and Gonzalez pointed out that the model

builder had alternate ways of putting the model of the

system together. The model builder sought to design a model

of the system that optimized the behavior of some measure of

the system. Design of system for simulation was primarily

concerned with developing an algorithm that solved the

model of the system based on the behavior of the system.

1 9 Wyman , Simulation Modeling, p. 2.

38

The model builder also specified the data required to solve

the algorithm, referred to as input. Finally, the model

builder defined the information or solution of the model.

This was referred to as the output of the model of the

system. 20

These basic steps for a design of system for simulation

are shown in Figure 1, Design of System.

__ L DA ______ TA /1-1 --2"11 ALGORITHM ·-t---I ~i SOLUTIoNj

Figure 1
Design of System.

Any information required by the algorithm was referred

to as data. Some models required a large amount of data

or input while others required very little or in some cases,

no data at all.

To construct the algor ithm, a sequence of steps was

devised for the computer. These steps processed the data

in such a way as to solve the model and produce the output

or solution. In the book, Systems Analysis, A Computer

Approach to Decision Models, McMillan and Gonzalez stated

20McMillan and Gonzales, Systems Analysis, p. 9.

39

that the exact definition of an algorithm was a set of

a r ithmetical equations and logical operations in an ordered

sequence, to achieve the goals of the model of the system.

The logical operations allowed decisions that altered the

sequence of steps in the algorithm. The output gave all

the required infor mation concerning the solution. 2l

In designing the model for the computer, the model

builder specified the steps of the design in a graphic form

before writing the computer program. This was called a

documentation of the model of the system. This documentation

was very helpful in the design of system process and in

coding the model into the symbolic language for the computer

to process.

To document or represent the model of the system in

graphic form, symbols were used. Each step of the design

was specified by a symbol and these symbols were shown in

the order of the sequence that they were used to solve the

model. The form of each symbol suggested the process needed

to solve the design of system algorithm. The symbols were

connected together by arrow line segments that represented

the sequence of the design of the model of the system.

Shown in Figure 2, Design Symbols, are the basic symbols

used and an explanation of when they were used in the design.

2lIbid., pp. 18-19.

41

The scientific method was applied in building models

of systems. According to McMillan and Gonzalez, this

meant t hat the model accounted for all known facts, and

secondly, the model enabled predictions of the system to

be made which could be tested by any independent observer. 22

The final step in simulation was to evaluate the model.

The testing or validating of a model was done by making

more observations and measurements of the system, making

further experiments with the model of the system, and

comparing the results of the computer simulation to the

observations.

Summary of the Chapter

Simulation meant a representation of reality. There

were many different fo"rms of simulation or ways of

representing the real world, such as verbal descriptions

and pictorial designs. Another way was with mathematical

equations. If a mathematical equation was extremely

difficult to solve analytically, it was solved on a

computer and this was known as a computer simulation.

Simulation provided a method for testing and evalu­

ating alternatives for proposed systems or a method of

studying the behavior of systems, without affecting the

real system. The simulation of a system was not a precise

22Ibid., p. 9.

42

representation, but was a symbolic representation. The

simulation did not result in an optimal solution for a

problem, but did give valuable insight into a problem.

The simulation of a system provided the best way of discover­

ing the behavior of a system. Hours, days, weeks, or years

of the operation of a system were simulated in a matter of

minutes on the computer.

Wi t out a system there would be no application of

simulation. A system was defined as a set of objects with

definable characteristics that were tied together by

relationships. These relationships tied the system together.

The objects of a system were called entities and t he

cha r acteristics used to describe the ob jects were referred

to as attributes. An activity of an object of the system

was known as an event.

Systems were classified many different ways; such as,

open and closed systems, and natural and man-made systems.

Also, systems were divided into subsystems. Systems were

described at anyone point in time by evaluating the

characteristics of the objects. The result of this evalu­

ation was called the state of the system.

Models of systems were descriptions of systems. Models

were not precise analogs of systems, but were a likeness of

the system. Computer simulations required the two processes

of analysis of system and design of system. The analysis

of a system began with observation of the system and the

43

identification of the parts of the problem of the system.

The analysis furnished a hypothesis of the behavior of the

system, a definition of the entities, attributes, and

relationships of the system, and the events of the system.

The design of system was the building of a model of

the system that was processed on the computer. The primary

purpose of the design was the construction of an algorithm

to solve a problem of a system, or to study the behavior

of a system.

Computer simulations were used to solve problems in the

field of b s iness as well as social sciences, physical

sciences, and engineering. Simulations in the field of

business we c used primarily to evaluate different alter­

natives of management policies that could be applied to

business operations.

CHAPTER V

COMPUTER TERMINALS AND BASIC

Development of BASIC Lan~ge and
Time-Sharing Computer :y8tems

The BASIC programming language was created with the

appearance of "time-sharing computer systems." Time-sharing

was the utilization of one central computer by many

different users. Each user had a certain fixed amount of

time on the computer and they shared this time on a

rotating basis. The user had access to the computer by

means of a typewriter-like device called a remote terminal.

The terminal was connected to the computer by telephone

lines and the user utilized the terminal as an input-output

device to communicate with the central computer.

In BASIC Programming for Business, Sass stated that one

of the first time-sharing systems developed was at Massa­

chusetts Institute of Technology in 1961. In the next few

years, time-sharing systems were developed by the Digital

Equipment Corporation and the Rand Corporation. A majority

of the major computer manufacturers had time-sharing

systems. 1

lC. Joseph Sass, BASIC Programming for Business (Boston:
Allyn and Bacon, Inc., 1972), p. 4.

44

45

There were many advantages of time-sharing computer

systems that made it one of the fastest growing segments in

the computer field. Most important of these was that it had

provided computer access for so many people. Other advan­

tages were lower costs ' brought about by many users sharing

the cost of one central computer, the ease of operation

with the teletypewriter terminal, and the conversational

mode that permitted the user to communicate with the

computer in a question and answer response.

Sass pointed out that the capability of bringing the

computer to the user had brought many more users to the data

processing field. Many of the new users were not computer

programmers, yet they needed the capabilities of the

computer to assist in some activity in their occupation.

They needed a language that was easy to learn, not techni­

cal, yet one that provided the maximum benefit of the

computer. The BASIC programming language was developed by

John G. Kemeny and Thomas E. Kurtz for use on the computer

terminals of the time-sharing system at Dartmouth College

in 1964. BASIC stands for BEGINNER'S ALL-PURPOSE SYMBOLIC

INSTRUCTION CODE. The language code was similar to English

and the programs required very few instructions. 2

2Ibid ., p. 6.

46

Programs and Programming Defined

Before learning about the BASIC programming language,

an understanding o f the general concepts of a program and

programming was necessary. A program was a set of direc­

tions performed in logical sequence on the computer to

solve a particular problem. Programs were written in a

programming language used to communicate with the computer.

The languages differed according to the type of computer

and the type of problem. The program must be written

according to the rules of the programming language and for

the specific type of computer, since the computer could do

only what it was instructed to do.

There were several steps involved in program writing.

The first was defining the problem. The definition involved

analyzing what data would be needed for input, deciding

upon procedures to follow in order to obtain the solution,

and the data required for the output. Second, a method

was created to solve t he problem. The method was called

the algorithm of the program. It consisted of a set of

steps that used the data in such a way as to lead to the

solution of the problem. The logical flow of directions to

solve the problem on the computer was the third step. A

flowchart was used for this step. A flowchart was a

pictorial representation that showed the algorithm. The

fourth step was writing the program. This was called

coding the program and it must follow the rules of the

47

programming language used. The flowchart created in the

third step was a guide for the coding of the programG

Fifth, the running or execution of the program on the

computer was performed. This was a test to see if the

program led to the solution of the problem.

Of the five steps used in program writing, establishing

the flow of directions to solve the problem shown by a

flowchart was the most important step, according to Sass.

The flowchart helped to define the problem by illustrating

each separate part required to solve the problem. The

flowchart showed the source of input, the logic used for

the solution of the problem, and the output. The flowchart

was also a guide in writing the program statements for the

computer and it became a documentation of information for

the problem. 3

The pictorial representation of the steps used special

symbols. Each symbol had a special meaning and the syrriliols

were connected with directional arrows. The arrows gave the

sequence of the procedures to be performed by the computer

that would lead to the solution. Inside each symbol there

was a written explanation that described the procedure step

represented.

Shown in Figure 3, Flowchart Symbols, are a few of the

most used symbols in flowcharting with an explanation of what

the symbol represented or meant.

3Ibid., p. 12.

49

BASIC Program Writing

After understandin~ t he general concepts of program­

ming and programs, the reader was prepared to study concepts

of the BASIC language. The general concepts which follow

were used to serve only to introduce the reader to the

BASIC language. These concepts were based on IBM's Time­

Sharing system and their version of the BASIC language.

In the ITF: BASIC Terminal User's Guide, it was stated

that a BASIC program consisted of a number of entries that

comprise the steps necessary to solve a problem. Each entry

had a line number and was called a BASIC statement. The

line number was an integer between 0 and 99999. The line

number specified the order in which the entries of BASIC

statements were processed. 4

The BASIC statements were organized according to

specific rules and were divided into two types: executable

and nonexecutable according to the ITF: BASIC Terminal

User's Guide. Executable statements specified a program

action and nonexecutable statements provided infonmation

or data for program action. An example of an executable

statement was INPUT R4, R3, R2, RI. An example of a

nonexecutable statement would be DATA 67,32,90. BASIC

entries were retained in the computer in the numeric

4ITF: BASIC Tenminal User's Guide (New York: Inter­
national Business Machines Corporation Programming
Publications, 1970), p. 69.

50

sequence of the line numbers, but they did not have to be

entered in a numerical sequence. Executable and nonexecut-

able statements could also be intermixed. The BASIC

statement after the line number was composed of constants,

variables, expressions, and/or labels or messages combined

with BASIC command key words. 5 Examples of BASIC statements

were:

700 LET S3=B7 * 678.2 + G2

710 READ Rl, Y8, R2, Y7

720 IF A$=B# THEN 620

730 PRINT' THE TOTAL ENROLLMENT IS " T4

Constants were either numeric, character, ' or internal

values. Constants had a defined value that did not change

throughout the execution of a program.

Numeric constants were real numbers, either whole or

fractional. For example, the numbers 105, -21, 18.945 were

all considered numeric constants. Numeric ' constants could

be represented as above or in exponential form. The exponen-

tial form was usually used for very large or small numbers.
1

To express the number 59.2 X 10 in BASIC, it was written

59.2E7. This was evaluated as 59.2 raised to the seventh

power of base ten. In summary then, any group or string of

characters that was a decimal number was called a numeric.

constant.

5Ibid.

51

Character constants were strings of characters made up

of alpha-numeric characters. These constants were always

enclosed by a pair of single or double quotation marks.

The computer stored all character constants as eighteen

characters, filling them with blanks if the length was less

than eighteen. Examples of character constants were

'STORE A56', 'PROGRAMMING', and 'INTEREST 5%'.

Internal constants were strings of characters that

represented a value that had been predefined by the BASIC

language. The three internal constants defined were for

the values of e,PI, and the square root of two; each had a

name, as was specified by the rTF: BASIC Terminal User's

Guide. The programmer used internal constants by referring

to them by their name. 6

Variables were also used in BASIC entries. There were

four types of variables: simple numeric, simple character,

array numeric, and array character variables. A variable

represented a string of characters whose value was assigned

and could change during the running of a program. This

meant the data could take on different values at different

times during the execution of the program and for each

different execution of the program.

A simple numeric variable was named by a single alpha­

betic character or an alphabetic character followed by a

6Ibid., p. 73.

52

digit. Numeric variables stored only nurrlbers. Examples of

simple numeric variable names were H8, W, and K6.

Character variables were named by an alphabetic

character followed by a dollar sign. These variables con­

tained strings of characters made up of alphabetic letters

and/or numeric digits. Examples of simple character variable

names were T$, U$, and N$.

Array numeric variables and array character variables

were sets of character strings. Array numeric variables

contained numbers only and t hey were identified by naming

them with a single alphabetic character. Array character

variables contained alphabetic letters and numeric digits

and were identified by naming them with an alphabetic

character followed by a dollar sign. Each character string

in the array character variable set was eighteen characters

in length.

All numeric variables initially had the value of zero.

All character variables were initially set to a value of

blank by the BASIC system.

Expressions contained constants, simple variables,

array variables and/or functions which were combined with

operators. Expressions represented a value or values and

were divided into three different types: scalar, array,

and relational. Scalar expressions represented a single

value. Array expressions resulted in a set of values, and

relational expressions represented a true or false value.

53

There were five mathematical operations possible i n

BASIC expressions: exponentiation, multiplication, division,

addition, and subtraction. The mathematical operation was

coded by using a symbol for the operation. The ITF: BASIC

Terminal User~ Guide gave the following list of symbols and

the mathematical operation they represented~

1. + addition

2. - subtraction

3. * multiplication

4. / division

5. ** exponentiation

Expressions could also contain parentheses and unary

operators. The unary operators were the plus and minus

signs for the numeric values. 7

The expressions in BASIC were evaluated according to

rules of precedence. The highest precedence was the paren­

the s is. If there were parentheses within an expression

in the BASIC statement, this part of the expression was

evaluated first. The second highest precedence was exponen­

tiation. Multiplication and division shared the third

level of precedence and subtraction and addition made up ­

the fourth or lowest level of precedence. For those levels

of precedence that had two mathematical operations possible,

the computer evaluated the expression working from left to

right.

7Ibid., p. 74.

54

BASIC Language Commands

The following is an explanation of BASIC programming

concepts of the most commonly used BASIC commands. They

are briefly explained and further reference to the rTF:

BASIC Terminal User's Guide should be made. The BASIC

commands were explained here in order that the Simulation

Programs discussed later in this research problem in which

the BASIC language was used could be better understood.

The BASIC commands were grouped together according to

the similarity of their use. The following types of BASIC

commands were discussed: Input-Assignment Commands.

Output Commands, Transfer Commands, Array Commands, Sub­

routine Commands, Function Commands, File Commands, and

System Commands. Several miscellaneous commands that were

used for almost every type of program were also included.

Input-Assignment Commands. There were three methods

available for entering data into a BASIC program. They

consisted of the LET cornman , the INPUT command, and the

READ command which was used in conjunction with a DATA

statement.

The LET command entered data into a program by assign­

ing values to variables. The assignment of the value to the

variables could be done by assigning numeric or character

constants and variables to the variables or by assigning

values to the variables with mathematical expressions or

functions. The general format was LET (variable name) =

55

(character or numeric constants and variables or mathe­

matical expressions or functions). According to Sass in

BASIC Programming for Business, this BASIC command

included an equal sign and this could be interpreted as

assigning the evaluation on the right side of the equal

sign to the variable on the left. 8 Examples of the use of

the LET command were:

LET B = 5 + N * XJ

LET B$= 'TOTAL'

The LET command was also the principle way to perform

computations in the BASIC programs since it evaluated

mathematical expressions and functions on the right side of

the equal sign and assi gned the result to the variables on

the left side of t he equal sign.

There was one other use of the LET statement. This

was called the Multiple LET statement. A single mathe-

matical expression, function, numeric, or character constant

or variable could be assigned to more than one variable at

a time. In the following BASIC Multiple LET sLatement, the

result of the expression 56 ~n~ 3 + 67 would be assigned to

variables E6, T, and R2.

LET E6, T, R2 = 56 ~~ 3 + 67

8Sass , BASIC Programming, p. 21.

56

The INPUT comnland was the second method for entering

data into a BASIC program. It assigned specific values

to variables during the execution of a program. Because

the values were assigned during the execution, each

different execution of the same program allowed the user to

vary the values assigned to the same variable. When the

program was run and the INPUT command was encountered, the

computer printed a question mark on the teletypewriter.

The user of the program at this time supplied the value or

values that were assigned to the variables in the INPUT

conunand.

The INPUT command was usually used when only limited

amounts of data were entered into the program or the data

varied for different program executions. The variable

names in the INPUT command must correspond to the types

of values entered by the user, or the computer would termi­

nate the execution. The general format of the INPUT command

was INPUT (variable or variables separated by commas). The

PRINT command was often used with the INPUT command to print

a message which identified the variables for the data the

user was to supply and type in at the terminal. An example

of the INPUT corrunand was:

INPUT A, R$

? 785.3, 'LANGUAGE'

In the previous example, the computer typed the question mark

and the user typed the values 785.3 and LANGUAGE following

57

the question mark, for the variables A and R$ named in

the INPUT command.

The READ command and the DATA statement was the third

method for entering data into a BASIC program. The READ

command specified the variables which were assigned the

values supplied in the DATA statement. The READ command

was used for entering large amounts of data into a program.

According to rTF: BASIC Terminal User's Guide, the

first value in the DATA statement was assigned to the first

variable in the READ command; the second value was assigned

to the second variable, and so forth. Each variable in the

READ command was assigned the successive values in the

DATA statement; there must be at least one DATA statement

when using the READ command in a program. The variable name

types named in the READ command had to correspond to the

type of values given in the DATA statement, but the variable

types could be intermi ·~ d . The DATA statement did not have

to precede or follow the READ command; it could be placed

anywhere before the END command of a program. The programmer

could change the DATA statement before any execution of the

program when different values were needed for the variables.

The general format for the READ command and the DATA state­

ment was READ (variable or variables separated by commas).

and DATA (numeric or character values, separated by commas).9

9ITF : BASIC Terminal User's Guide, p. 92.

58

An example of these commands was:

READ C, N$

DATA 59.321, 'PROGRAM'

The RESTORE command was used with the READ command and

DATA statement if i L was necessary to use the same DATA

statement for more than one READ command. The RESTORE

command resets the reading of the DATA statement so that

the subsequent READ would start assigning values at the

beginning of the list of values in the DATA statement.

Output Commands. The method for output of processed

information on the terminal used the PRINT commandQ There

were several important concepts that must be understood

about the printing that occurs at the terminal.

The format of the print line was to some extent

controlled by the BASIC system. The programmer controlled

the density of the line, but the format of the values

printed was standard. Each PRINT command caused the computer

to begin a new line on the terminal.

Horizontally, the print line was divided into what was

called full print zones, each one having eighteen print

positions. The comma between the variable names or con­

stants in the PRINT command caused the computer terminal

teletype to move across the page to the next full print zone.

To explain this concept, consider the PRINT command, PRINT

'TOTALS', A, D. The computer teletype printed TOTALS

59

starting a t print position one on the line, skipped to

position nineteen to print the value for the variable A,

and finally would move to print position thirty-seven to

print the value of the variable D.

The programmer controlled and changed the number of

print zones on a line by the use of semicolons between the

variable names and constants. In ITF: BASIC Terminal

User's Guide, it was stated that the use of semicolons was

called using packed print zones. With the use of packed

print zones for numeric data, the length of the printed

field was determined by the size of the value. For example,

if the length of the numeric value was two to four characters,

the packed zone was six characters in length, and the number

321 appeared as X32lXX, where X represented a blank. If

the length of the numeric value was five to seven digits,

the packed print zone was nine characters. For example,

the number 321445 appeared as X32l445XX. If the data item

was a character variable or constant, the s ize of the packed

print zone was equal to the length of the character variable

or constant. The character variable that contained the word

"item," had a print field of four characters. 10

The PRINT command contained numeric or character

variables or constants, expressions, and format items. In

BASIC Programming for Business, Sass gave several important

lOIbid., p. 29.

61

the format of numeric variables to be printed in a program.

The PRINT USING command specified the variables to be

printed and the statement number of the IMAGE statement to

be used to print t se variables. The IMAGE statement gave

the format of the print line. A colon identified the start

of the IMAGE statement. All the alphabetic characters in an

IMAGE statement were printed as they appeared in the IMAGE

statement and the "iAs" were replaced by the values of the

numeric variables given in the PRINT USING command, accord­

ing to the ITF: BASIC Terminal User's Guide. l2

The general format of the PRINT USING command was

PRINT USING (image statement number), numeric variable or

variables separated by commas). The general format of the

IMAGE statement was IMAGE: (charac-ter constants and format

specifications). The character constant was any alphabetic

character except the "#" (number character). An example

of the PRINT USING command and IMAGE statement was:

305 PRINT USING 670, M7, G

670 IMAGE: THE FINAL TOTAL $ ###.## FOR ITEM ##

The PUT command caused values to be placed in or written

on a specified file. This was another way to obtain

processed information in BASIC, not on the terminal tele­

type, but on a storage device such as a magnetic disk pack

or tape. The general format was PUT file name, (constants

l2ITF: BASIC Terminal User's Guide, p. 30.

62

or variables separated by commas). An example of using it

was:

PUT 'DGF', C7, 2134.90, XB.

The file name in t le preceding example was 'DGF' and the

values written on the file were the values of the numeric

variables C7 and X8 and the numeric constant 2134.90.

Transfer Commands. The transfer commands or statements

gave the programmer two important programming capabilities,

altering the sequence of the execution of a program and

building program loops. Altering the sequence of execution

meant that the order of the program statements were not

processed in the original sequential order in which they were

written or entered.

A program loop was a series of program statements

executed a variable number of times, but only coded once in

the program. With the use of program loops, it was not

necessary to rewrite the same statements over again every

time they were needed. Loops were very important in

programming because they saved time in writing statements

and shortened the length of the programs.

There were several BASIC commands that were used to

alter the sequence of execution of a program and to build

program loops. They were considered transfer commands

because they transferred control. The following transfer

commands were discussed: the GO TO command, the IF-THEN

command, the FOR command, and the NEXT statement.

63

The GOTO command had two forms. The first form caused

control to be unconditionally transferred to a specified

statement. This was called the SIMPLE GOTO statement. The

GOTO command was followed by a line number that indicated

the next program statement to be executed which altered

the original sequential order of processing. The general

format was GOTO (statement number). An example of the GOTO

command was:

GOTO 240

The second form of the GOTO statement caused control to

be transferred to one of a set of statement numbers. Which

statement number the control was transferred to depended on

the value of an expression specified in the GOTO command.

In ITF: BASIC Terminal User's Guide, this was called the

COMPUTED GOTO statement and was known as a conditional

transfer of control. The expression in the command was any

valid BASIC expression. The line nwnbers were those to

which the transfer of control would go depending on the

value of the expression. The value of the expression was

truncated to a whole number. When the GOTO counnand was

executed, the computer transferred control to the first line

number specified, if the value of the expression was a one;

or control passed to the second line number if the value was

two, or to the third line number if the value was a three,

and so on. If the value of the expression was less than one

64

or greater than N (N being the nmfiber of line numbers listed

in the GOTO statement), the next executable statement follow­

ing the GOTO command was processed. The sequence of the

program was not altered if this occurred. The general

format of the GOTO command was: GOTO (statement numbers

separated by commas) ON (arithmetic expression).13 An

example of the COMPUTED GOTO command was:

GOTO 45, 32, 67, 17 ON 88 + A/T - 6

The IF THEN command provided a method for the programmer

to alter the sequence that the program statements were exe­

cuted. It was a conditional transfer of control. The

transfer of control depended upon a relationship tested. The

relationship involved a comparison between two expressions.

The expressions were of various complexities. Expressions

contained character or numeric constants or variables or it

was an arithmetic expression. The IF THEN statement also

included a logical operator to indicate the type of relation­

ship or the type of comparison to be made. The ITF: BASIC

Terminal User's Guide gave the following as the types of com­

parisons that could be made: less than, greater than, equal

to, not equal to, less than or equal to, and greater than or

equal to. If the relationship between the two expressions was

false, the next statement in the sequence of the program was

executed. If the relationship tested was true, transfer

l3Ibid., p. 82.

65

of control occurred and went to the statement number follow­

ing the THEN in the IF THEN statement. The general format

was IF (character or numeric constant or variable or

expression) relational operator (character or numeric con­

stant or variable or expression) THEN (statement number). 14

Examples of the IF THEN conunand were:

IF N4> X + 56')"33 THEN 590

IF M7 2: Y3 THEN 370

IF G$ = J$ THEN 780

IF E - 56.97 <Y THEN 128

The FOR command and the NEXT statement were used for

the programming technique of looping, according to Sass.

A program loop caused a specified group of program statements

to be executed a certain number of times. The FOR command

identified the beginning of the loop and caused the repeated

execution of the statements that followed it up to the

matching NEXT statement. The NEXT statement identified the

end of the loop and was known as the physical end. Control

was passed to the statement that sequentially followed the

NEXT statement when the loop statements had been executed

the specified number of times. 15

The FOR statement specified the number of times the

loop or program statements would be repeated and also

14Ibid., p. 28.

15Sass , BASIC Programming, p. 97.

66

specified the numeric variable used as a countere Each

time the loop was executed, there was an increment of one

added to the counter variable. When the value of the

variable or counter exceeded a num ric constant or variable

used to specify the number of times to repeat the execution,

the loop ended.

The constants or variables in the FOR command that

gave the starting and ending values for the counter variable

were called the range specifications. There was an incre­

ment of one for the counter variable unless it was

explicitly coded otherwise with the use of the STEP option.

In the following example: FOR IS = 1 TO 50 STEP 2, an

increment of two would be added to the counter variable IS

every time the loop was executed. The general format of

the FOR command was FOR (numeric variable) = (numeric con­

stant or variable or expression) TO (numeric constant or

variable or expression) STEP (numeric constant or variable

or expression). The general format of the NEXT statement

was NEXT (numeric variable). The numeric variable used as

a counter in the FOR command (on the left side of the equal

sign) was the same numeric variable used in the NEXT state­

ment. An example of these commands was:

50 FOR X9 = 1 TO G5 STEP 3

51
52
53 NEXT X9

67

Subroutine Commands. In the ITF: BASIC Terminal User's

Guide, it was indicated that subroutines were written for

programs using certain BASIC statements. Subroutines were

program segments that represented programming steps used

frequently or needed more than one time. A subroutine was

composed of a group of program statements separate from the

main program and executed by altering the sequence of the

main program an d skipping to the subroutine. The GOSUB

command and the RETURN command provided what was called the

linkage to and back from the subroutine. 16

The GOSUB command was used to transfer control or skip

to the subroutine. The transfer of control went to a speci­

fied statement number that was the first statement number of

the subroutine to be executed. The general format was GOSUB

(statement number).

The RETURN statement was used with the GOSUB statement.

It caused program control to be transferred back to or

returned to the next logically executable statement following

the GOSUB command. The general forma ' was RETURN (character

string). The character string was a comment or message which

was optional. It did not affect the execution of a program

and only appeared when the program was listed. An example of

the GOSUB command and the RETURN command was:

l6ITF: BASIC Terminal User's Guide, pp. 51-52.

500 GOSUB 710
510
520

710
720
730
740

68

750 RETURN END OF SUBROUTINE FOR RANDOM NUMBERS

The BASIC statements numbered 710 through 750 were the

subroutine statements. The statement number 710 following

the GOSUB command caused the transfer of control to the

subroutine. When the subroutine statements had been exe-

cuted, the RETURN command caused a transfer of control back

to the BASIC statement numbered 510. Some programs required

subroutines that skipped to other subroutines. In thi·s case

more than one GOSUB command was allowed before the RETURN.

Function Command. A function was a named arithmetic

expression ·which computed a single numeric value from an

argument. The argument .of a function was either an arith­

metic variable or an expression. It represented a numerical

value on which the arithmetic operation specified in the

definition of the function was performed. Two types of

functions existed in the BASIC language: the Intrinsic

functions and the User functions.

The Intrinsic functions were functions supplied by '" the

BASIC language. There were twenty-four of these functions

69

defined in the ITF: BASIC Terminal User's Guide. The

Intrinsic functions consisted, for example, of functions

that computed the sine of x radians named SIN, cosine of

x radians named COS, square root of x named SQR and loga­

rithm of x named LOG.17

The second type of function, the User function, was

written by the programmer. A User function was named and

defined by the BASIC DEF statement. The name was a single

alphabetic character preceded by the letters FN. Examples

of function names were FNC or FNR. An example of the DEF

statement to define and name a function was:

DEF FNC(X) = X ~~: 3 + 45.89 * X

The numeric variable X enclosed in parentheses after the

function name FNC was called the dummy variable. The dummy

variable was. a simple numeric variable. The function per­

formed the defined calculation on the argument value
-.

substi t uted for this dummy variable. After a function was

defined, it could be used anywhere in the program. This

gave the programmer the . advantage of performing, the same

calculation on many different values without duplicate coding.

Array Commands. An ARRAY was a table of data and all

data within an array were of the same type. In BASIC, there

were two kinds of arrays, numeric and character. Numeric

l7Ibid., p. 107.

,/, ' .

70

arrays contained or included only rnlIneric values and

character arrays contained or included only character values.

If an individual data item or member of the array was

in a program statement, the BASIC system automatically set

up the array at this time with- ten members. This was called

implicit declaration of an array. Explicit definition of

an array was the array defined with the use of the DIM

statement, the number of data items in the array being
.

specified in the statement. This was necessary only if the ~

array was to contain more than ten members. An example of

an explicitly defined array was DIM T (25). This set up

storage space for an array named T and twenty-five data

items for that array. The number, 25, in parentheses was

called the bounds of the array.

To refer to an individual data item in any array, the

array rtame was given followed by the location of the data

item in p~rentheses. For example, A(l) would refer to the

first data item and A(3) would refer t~ the third data item

or member of the array T. The number in parentheses giving

the location was called the subscript. It was important to

remember the difference between a subscript and the bounds of

an array. The subscript was used to refer to a member of

the array. It was any valid arithmetic expression such as

a numeric constant or numeric variable. The bounds of an

array defined the total number of data items or members of

71

an array_ The bounds of · the array was used only in conjunc­

tion with a DIM statement and was a positive integer.

Numeric arrays were either one or two dimensional

arrays; character arrays were only one dimensional arrays.

An example of a two dimensional array was T(5,2). This had

ten members just like the one dimensional array defined as

S(lO). The difference was that the members of T were

divided into two dimensions so that the programmer thought

of five small arrays, each with two members. The following

examples were how each member of the arrays, T and S, were

referred to in a program.

T(l,l), T(2,1), T(3,1), T(4,1), T(5,1)

T(1,2), T(2,2), T(3,2), T(4,2), T(5,2)

S(l), S(2), S(3), S(4), S(5), S(6), S(7), S(8), S(9), S(lO)

If the bounds of the array was two dimensional, two sub­

scripts were used to refer to a member.

Numeric arrays we r e named by a si~gle alphabetic

character. The BASIC system initially set all data items in

a numeric array to zero, according to the ITF: BASIC

Terminal User's Guide . . Character arrays were named by a

single alphabetic character f o llowed by a $ sign. The

BASIC system initially set all character array data items to '

blanks and each member was automatically set as eighteen

characters in length. Character arrays were not used in

MAT array statements. 18

l8Ibid. -, pp. 32-34.

72

Arrays were given values.through the use of the LET state­

ment, the READrstatement, the INPUT statement, or the

MAT statements. MAT statements could only be used, though,

to supply values for numeric arrays. When supplying input

values for arrays with the READ or INPUT statements, every

array member assigned a value had to appear in the statement.

An example of the INPUT statement to assign values to the

array defined DIM T(5) was coded as INPUT T(l), T(2), T(3),

T(4), T(5).

Another way of supplying values to an array was to use

a program loop, the FOR NEXT statements, and the READ state­

ment. It would be coded as:

FOR N = I to 5
READ T(N)
NEXT N
DATA 89, 54, 3, 21, 77

.'

The subscript, N, for the array, T,' in the READ statement

was used to specify every member of the array so that the . .
location of every member was used during the execution of

the program loop. An example of program statements that

supplied values for a two dimensional array named L was

coded as:

DIM L(5,7)
FOR J = I TO 5
FOR N = I TO 7
INPUT L(J,N)
NEXT N
NEXT J

t. .

"

73

The BASIC language provided for array matrix operations

with a group of. program statements called MAT statements.

These MAT statements performed matrix assignment operations

and matrix mathematical ope~ations. Only numeric arrays

that had been previously defined eith~i explicitly or

implicitly were used in the MAT statements. In several of

the MAT statements, it was possible to define new bounds for

the array; this was called redimensioning an array. All·

MAT statements us~d the ~ d, MAT, and the array(s) name.

Individual array member names were not used in MAT state-

ments. The BASIC system provided the following matrix

assignment statements for the input and output of arrays.

The MAT GET statement read a file of numeric data into

the array named in the statement. An example of this .

statement was: MAT GET 'IF', X(30). The MAT INPUT state-

ment assigned values from the termi~al during execution to

members of "a n1..Uneric array. An example of this statement

coded was: MAT INPUT Y. The MAT READ· statement read

numeric data from the DATA statement into a numeric array

named in the MAT READ statement. It was coded as:

MAT READ Z(20).

The MAT PRINT statement printed each member of an array

at the terminal. The. array was printed row by row; the

first row of each a r ray began at the start of a new line.

An example of the statement coded was: MAT PRINT Z. The

MAT PRINT USING statement printed at the terminal -an array

74

in the format of the associated IMAGE statement. An example

of this statement coded was: MAT PRINT USING SO, X. The

MAT PUT statement created or added the values of a numeric

array to an output file. l~ was coded as: MAT PUT'VFL', X. ·

The following were MAT statements that performed other

matrix assignment operations and mathematical operations for

arrays. An example of each coded follows the explanation of

the statement. The MAT Simple Assignment statement assigned

the members of o~e array to another array. MAT X = Y. The

MAT Addition or Subtraction Assignment statement assigned

either the sum or the difference of the members of two arrays

to the members of a third array_ MAT X = Y(+ or -) Z. The

MAT CON function assignment statement assigned the value,

one, to all members of an array and also provided the .,option

of redimensioning the array. MAT X = CON (N,N).

The MAT IDN function assignmen~ statement changed an

array to its identity matrix. MAT X = IDN (N,N)" New

bounds COll be specified. The MAT Inversion assignment

statement assigned the mathematical matrix inverse of one

array to another array. MAT X = INV (Y). The MAT Multi-

plication Assignment statement provided the mathematical

matrix multiplication of two arrays. The product Was

assigned to a third array. MAT X = Y * Z. The MAT Transpose

assignment statement placed the matrix transpose of one,

array into another array. MAT X = TRN (Y). The MAT ZER

function assignment statement assigned the va~ue, -..zero, to

...

75

all members of an array ~d it also' provided the option of

specifying ne~ bounds for the array. MAT X = ZER (N,N).

File Commands. A file was a group of related data that

was treated as a unit. For example, data collected about

the amount of inventory sold over- a period of time might

form a series of related data which could be called a file.

The BASIC language system provided a method of storing this

data so that it could be used in the program currently being

processed or in ~y later program. These files were retaine~

in what was called the BASIC 'System Library. A library was

a part of a computer storage unit. Files were initially

created, using the PUT statement. The GET statement was

then used after the file was created when a program needed

to use the data in the file.

In the ITF: BASIC Terminal User's Guide, it was pointed

out that whenever a file was created, it must be named.

This was accomplished by including the file name·enclosed in

single or double quotes in the PUT stat~ment. For example,

the BASIC statement, PUT 'AFL', X, y~ Z, would-create an

output file, name it AFL, and place the values X, Y, and Z

in it. File names could be .any length, but certain

restrictions existed for the first three characters of the

name; such as, it could not contain a period, a comma, or a

semicolon. These restrictions existed because the BASIC

system recognized file names by the first three characters

only. Longer names were truncated and shorter file names

76

were filled with blanks . . It was important then that the

first three chqracters be unique and to avoid duplication,

it was best not to exceed three characters~19

The files created wer€:, ,automatically retained in the

BASIC system library storage area of the computer. Once

a file had been created, it could be used as input to the

same program or it could be used as input to some other

program by the use of the GET statement.

When using t~e file after its creation, it was essential

to know how many items it contained or that the file had

what was called an "end of file indicator" as the last data

item. When using the file later, tests could be made for

the last data item or the "end of file indicator."

Once files had been created, they had to be activated

or opened before they could be used. This was done by the

BASIC system' automatically the first time the file name

appeared ia a PUT statement or in a GET statement" and the

file was deactivated or closed by the BA~IC system after the

execution of the program. If a file was created in a

program and then was needed in the same program later, it

had to be closed with a BASIC program statement called the

CLOSE statement before it could be reopened. The RESET

statement was another BASIC statement used in conjunction

with files that was important. The RESET statement pr~yided

19Ibid., pp. 45-46.

~

~

77

the capability of repositioning the ' file so that the first

data item was ~vailable again.

The following summary of the File Commands, PUT, GET,

CLOSE, and RESET that were used with a file was given in

the ITF: BASIC Terminal User' s- Gui de. The GET statement

performed the function of reading an input file and

assigning to the variables named in the GET statement the

values of the data items in the file. The general format

was GET (file name, variable, variable). An example of the

statement coded was GET 'AFL'" A, B, C, D. The PUT statement

perf-ormed the function of placing in a file the values listed

in the PUT statement. The general format was PUT (file

name, variable, variable). The statement would be coded as

PUT 'AFL', W, X, Y, Z. The RESET statement performed the

repositioning of a file to the beginning data item in that

file. The g"eneral format was RESET (file name). An

example of c,the statement coded was RESET 'AFL'. The CLOSE

statement provided for deactivating either input or output

files. The general format was CLOSE (file name) and an

example of using it was CLOSE 'AFL,.20

Miscellaneous Commands. Every program written in BASIC

was concluded with an END statement. The END statement

indicated the logical end of a program and was the last

line of the program with the highest line number. The END

20Ibid., pp. 46-49.

78

statement terminated the ,computer execution of a program.

The general fo~mat was END.

The STOPconnnand terminated the running or execution

of a program. The only difference between the STOP command

and the END command was that more than one STOP statement

was allowed in a program and it could be placed anywhere

within the program. The STOP statement was used most with

subroutines. The general format of the STOP command was ·

STOP (character cpnstant). The character constant did

not affect the execution and only appeared when the program

was listed. An example of the STOP statement with a

character constant was:

STOP THIS IS END OF THE RANDOM NUMBER ROUTINE.

The REM statement provided a method for the programmer

to use comments in a program. These explanatory remarks

gave directions for using the program. They also identi­

fied the different sections·or specifi~~other very needed

information. This was known as documenting a program and

it was a very valuable aid to both the programmer and

future users of the program. The REM statement was not part

of the execution or running of a program; it only appeared

when the program was listed at the terminal. The general

format was REM (character constant). Examples of the REM

statement were:

".P

79

REM THIS IS A PROGRAM TO BUILD A MODEL

REM THIS ,ROUTINE COMPUTES THE INTEREST ON A BOND

The PAUSE statement halted program execution and a

message was printed at the-· ·tertEinal giving the line number

of the PAUSE command. The user of the program would resume

execution by pressing the carrier return key. A character

constant or message was optional and did not affect the

execution of the program. The character constant was used

only when the program was listed. The general format was

PAUSE (character constant). An example of the PAUSE state-

ment was:

PAUSE 'THE OPERATOR SHOULD ENTER VALUES AT THIS POINT'

Systems Commands. The BASIC programming language had a

group of conunands called System connnands. These commands

were used wit h the programming cormnands. They were not part ,):,

of the co~puter program to solve the problem; they were

BASIC language commands to use in runoing or executing the

programs and in testing them.

The Systems commands were orders issued to the computer

that id not cause the computer to perform any logical

or mathematical operations. They did not have any problem­

solving capability; instead they controlled the function of

the computer. The Systems commands are briefly defined and

discussed here and the manuals from IBM provided the

information necessary to use the Systems connnands. There

80

were several terms that were defined to clarify the Systems

commands.

The word, mode, meant a method of operati.on of the

computer. There were two ~~ssible modes in which the
-

system operated: control mode and edit mode. The edit mode

had a test submode for debugging purposes. Library was an

area of storage where progr ams, text collections, and data

files were saved. Text collection was an ordered sequence of .
logical lines created in the edit mode with the text option. ~

Text collections were lines of data or documentation or

parts of programs.

The ITF: BASIC Terminal User's Guide ' gave the following

information about System commands. The AT command estab­

lished a breakpoint which would interrupt program exec~tion

when that breakpoint was reached. It permitted the user

to intervene " immediately before execution of the specified

command. the DELETE command deleted all or part of a

program or collection of text in the ecliL mode. In the

control mode, it deleted an entire program, text collection,

or a file from the private library. The EDIT command

placed the system into the eqit mode. In the edit mode the

user then created or modified programs or text collections.

The END command ended the current mode that the computer

was operating in. The GO command was used in the test sub­

mode to start or resume execution of a program. 2l

2lIbid., pp. 111-16.

81

In the ITF: BASIC Terminal User's Guide, it was indi­

cated that eac~ System command had specific uses for the

different operating modes of the command. The LIST command,

in the edit mode, caused the system to display all or part

of a program or a text collection at the terminal. In the

test submode, values of specified variables were displayed

at the terminal. The LISTCAT command provided a listing of

the names of every program, text collection, and file that

the user had in his private library along with its type:

BASIC, text, or file. The LOGOFF command ended a terminal

session. The LOGON command initiated a terminal session. It

was the first command used. The MERGE command caused part

or all of one program or text collection to be inserted into

another program or text collection. The NOTRACE command

turned off one or more traces established by the TRACE

command. It" turned off the tracing mechanism for variables,

branch po} tlts, files, and intrinsic fWlctions. 22 .

The OFF command turned off one or. more breakpoints

established by the AT command. It was used in the test

submode. The RENAME command renamed a library member. It

gave a new name to a program~ text collection, or a file.

The RENUM command caused the lines of a text. collection or

statements of a program to be renumbered. The RUN command

caused a program to be executed or to be tested as it was

22I bid., pp. 116-18.

82

executed. The RUN command executed' the current program in

short or long form arithmetic, according to the ITF: BASIC

Terminal User's Guide. The SAVE command caused the current

program or text collection to be saved in the private

library of the user. The TRACE command established traces

for variables, branch points, files, and intrinsic functions,

so the user was aware of program changes when they occurred.

This command monitored program execution by keeping track

of these changes •. 23

Summary of the Chapter

The use of computers in our society has increased

rapidly. Smaller and less expensive computers were avail­

able and the fundamental knowledge of computers was .'
required in education, industry, business, and government.

New and diffe en t problems were solved by applying the

capabilities of computer systems. A very significant and

important extension of the computer wa~·accomplished with

the development of commercial time-sharing systems and the

development of the BASIC programming language.

Time-sharing provided access to many users. One central

computer was shared by many people and each had a set time

to use the computer on a rotating basis. The user communi­

cated with the computer by means of a remote terminal, .ft

23Ibid., pp. 119-21.

83

teletypewriter device.

The BASIC program language was developed on a time­

sharing system located at Dartmouth College during the

period from 1964-66 by two professors. Many versions of

the language existed for different time-sharing systems.

The BASIC version described in this chapter was for the IBM

Time-Sharing System.

BASIC means Beginner's All-Purpose Symbolic Instruction

Code. The language was developed for the users who did not ~

want to be computer programmers. The BASIC program language

was , easy to understand and learn, yet sophisticated appli­

cations had been programmed in the BASIC language.

A computer program was a specific set of directions

performed in a logical sequence that identified to the

comput r how to solve a problem. There were five steps for

writing programs: (1) problem definition, (2) method of ~ t,_

solution ~alled the algorithm, (3) logical flow of algorithm

steps shown with a flowchart, (4) cod~ng the program, and

(5) execution, testing', and documentation of the ,program.

After the five steps were reviewed, the BASIC program

language was studied.

A BASIC program was composed of a number of entries.

Each entry consisted of a line number and a BASIC statement.

The line number specified the order in which program entries

were processed. The BASIC statements were made up of

constants, variables, expressions, and messages---c.ombined

84

with the BASIC command key words.

The programmer had to understand the rules for the

constants, variables, expressions, and BASIC command key

words in order to use the ~ASIC language. He then

proceeded to write the program. The BASIC command key words

were easy to use in writing the program because they had

inherent meaning from the English language. The name

BASIC was all it implied for beginners, yet it was all­

purpose in the types of applications possible for everyone.

. .

, ,

CHAPTER VI

APPLICATION OF · CO~WUTER SIMULATION

This chapter demonstrated and illustrated the use of

computer terminals and the BASIC programming language for

computer simulations. The steps of a computer simulation

explained in C~pter IV were used and the two processes of

computer simulation, analysi's of the system and design of

the· system, were followed. The flowchart of the design of

the model of the system and the computer program written

.
"

in the BASIC language for use on the IBM System/370 computer

terminal for the simulation of the system were included.

The first process for computer simulation was the

analysis of the systema It involved making the observa­

tions of ~he system to see how the system interacted or

behaved, isolating the elements of the· system, and formu­

lating the logical rules governing the interaction. The

following were the observations of the system made by the

analyst.

1. Continental Rent-A-Car was a branch office of

Ritter Rental Car Agency.

2. The manager of each branch of this agency decided

his own policy on the size inventory of cars to

keep in stock available for rental.

85

J

86

I

3. The home office 'of the Ritter Rental Car Agency

l evied a penalty charge of five dollars per day for

each car not rented and a penalty charge of two

dollars per day for each car demanded, but not

available.

4. The home office of the Ritter Rental Car Agency

g ve a credit of thirteen dollars per day for each

car that was rented by the branch office.

s. In the past, Continental Rent-A-Car had experienced

a daily demand of cars from zero to five, and the

manager had records showing the daily demand during

the past year.

6. During the past year, Continental Rent-A-Car had

zero cars demanded 5 percent of the time, one car

demanded 10 percent of the time, two cars demanded

25 percent of the time, t~ree cars demanded 30

percent of the time, four cars demanded 20 percent

•

of the time, and five cars demanded 10 percent of the

time.

7. The manager of Continental Rent-A-Car was interested

in knowing the inventory level of cars that would

maximize his profit, based on his previous car

demand experience.

The hypothesis of this system, or how the system "behaved,

and a statement of the simulation problem and goal followed

next in the analysis of the system. The problem ' was to

87

optimize the behavior of· the system by the measure of inven­

tory level of ,the system to achieve the goal. The goal of

the system was to maximize the profit of the business

operation. This problem W~S called a system optimization

study. This system was classed as an open system and a

man-made system. The model of the system was a probabilistic

model because uncertainty existed in the system. The events,

which were act ivities and behavioral changes of the objects

of the system, w~re based on a discrete probability distri­

bution. The goal of the system, maximum profit, was not a

continuous one, but changed as certain specifications or

events within the system occurred. When the event, car

" "

daily demand, was less than or equal to car stock level, the

states of the profit of the system changed; when the event,

car daily demand, was greater than car stock level, this

changed the profit of the system to different states.

The analysis also included a separation of the events

of interests of the system into exogenous and endogenous

events. The exogenous events could not be explained; they

were determined by a statistical probability distribution.

They were outside the control of the system. The endogenous

events were within the control of the system.. The exogenous

and endogenous events that occurred affected the way the

system behaved and caused the system to assume different

states.

88

The events of car daily demand were exogenous events.

The following ~ould occur: the daily demand for cars could

be zero, one, two, three, four, or five. The endogenous

events were the six possibl~ levels of car stock: zero, one,

two, three, four, or five.

Next in the analysis, the elements of interest of the

system were isolated. The objects of the system and the

objects of the environment of the system were identified.

The objects were .called entities. The characteristics or

properties of the objects were also defined. These charac­

teristics were referred to as attributes of the entities.

The manager of Continental Rent-A-Car was an entity of the

system. This entity was characterized with the following

attributes: (1) expected profit, and (2) car stock. Car

was an entity of the system and possessed the following

attributes: car units stocked, car units demanded, and

car units ~ented.

, ,

Profit was the third entity of the· system and possessed

the following three attributes: rental dollar, overstock

dollar, and overdemand dollar. Rental dollar was the credit

given the branch office by the home office for every car

rented. Overstock dollar was the penalty charge levied by

the home office for each car that was not rented per day and

overdemand dollar was the penalty charge levied for each car

not available, but demanded per day. These three attributes

89

were called paramet ers because they were fixed values and

did not change because of the events in the system. The

value for the rental dollar was thirteen, the overstock

dollar value. wa s fixed at five, and the overdemand dollar

was set at two.

The fourth entity was identified as customer who had

the attribute, car demand. This entity was part of the

environment of the system because the demand for a car by a

customer was not controlled by Continental Rent-A-Car.

The definition of the relationships of a system

provided the structure of a system and was the final step in

the analysis. There was a relationship in this system

between the attributes; car stock and car demand, and the

entity, profit. If the attribute, car stock, was zero or

greater j and greater than or equal to the attribute, car

demand; it changed the state of the entity, profit, of the

system. If the attribute, car stock, was less than the

attribute, car demand; the entity, profit, of the system

state was changed.

The second process for a computer simulation was the

design of the model of the system. It involved stating the

inputs, the algorithm, and the output of the model. The

input provided the necessary information to solve the model

of the system. The algorithm gave the method to solve the

simulation problem; the logic and steps used in the method

were shown in the pictorial form of a flowchart. The output

90

was the i f ormation that stated the solution of the model

of the system. The algorithm was the most important part of

the design and was used in coding the program for the

simulation on the computer.

The necess r y inputs for this model were values for the

events of car stock level of zero, one, two, three, four, and

five. The events of car daily demand were also inputs into

the model. These event values were based on a discrete

probability distribution. The event values are shown in

Figure 4, Car Demand Event Values.

Possible Event Probability
0 0.05

1 0.10

2 0.25

3 0.30

4 0.20

5 O.~O

Figure 4
Car Demand Event Values.

The output of the model of the system was the simula­

tion solution of the expected maximum profit and the car

stock necessary to obtain this profit.

The algorithm was explained below verbally and with

mathematical equations. For each possible value, zero

through five, of stock level event, combine a different

_value, zero through five, of daily delnand event and compute

91

the expected profit. If the value for t he event of stock

level was greater than or equal to the value for the event

of daily demand, compute a value for profit equal to the

rental dollar (thirteen) times the value of car units

demanded. Take from this value, the value of the over­

stock dollar (five) times the value of car units stocked in

excess of the value of car units demanded.

If the value for the event of stock level was less than

the value for the event of daily demand, compute a value for

profit equal to the rental dollar (thirteen) times the value

of car units stocked. Take from this value, the value of

the overdemand dolla r (two) times the value of car units

demanded in excess of the value of car units stocked.

The next step in the algorithm was the calculation of

the expected profit for every possible car stock level event.

After all expected profits were figured, the maximum expected

profit was determined.

"s" was the symbol for stock level event value, ltD" the

symbol for daily demand event value, and "p" the symbol for

profit. The mathematical equation for the profit when

s> = D is:

p = (D x 13. 00) - « S - D) x 5-.-00)

The mathematical equation for the profit when S < D is:

p = (S x 13.00) - «D - S) x 2.00)

The flowchart used in the design of the model of the

system is shown in Figure 5, Flowchart of Model, pages 92-94.

95

The last step in the design was coding the computer

program for the model of the system. The computer program

was written in the BASIC language explained in Chapter V.

It showed examples of using various BASIC commands and

statements discussed in that chapter. The program also

demonstrated the use of functions and the programming tech­

niques of "looping" and subroutines. The REM command was

used more often than necessarYt but it was done as a guide

for the reader in understanding the program and for docu­

mentation purposes. Figure 6, Computer Simulation Program,

illustrates the program.

10 REM SIMULATION PROBLEM TO FIND MAXIMUM PROFIT

20 REM FOR CONTINENTAL RENT A CAR

30 REM DEFINE STORAGE AREA FOR SAVING THE PROBABILITY

40 REM DISTRIBUTION FOR CAR DAILY DEMAND

50 DIM P(lO)

60 REM PROFIT FUNCTIONS

70 DEF FNA(X) = «13.00 * X) (5.00 * Y»)

80 DEF FNB(X) = «13.00 * X) - (2.00 * Y))

90 REM READ THE VALUES FOR PROBABILITIES OF DEMAND EVENTS

100 READ P(l), P(2), P(3), P(4), P(5), P(6)

110 DATA 0.05, 0.10, 0.25, 0.30, 0.20, 0.10

120 REM C IS VARIABLE USED TO STORE COMPUTED EXPECTED PROFIT .

130 REM FOR EVERY CAR DEMAND OF A CAR STOCK

140 LET C = 0.0

96

150 REM THIS SETS A LOOP FOR THE SIX STOCK LEVEL EVENTS

160 FOR L = 1 TO 6 STEP 1

170 REM INITIALIZE EXPECTED PROFIT FOR EACH CAR STOCK

180 LET E = 0.0

190 REM SET UNITS OF CAR STOCK TO RANGE FROM ZERO TO FIVE

200 LET S = L - 1

210 REM THIS SETS A LOOP FOR SIX DEMAND EVENT PROBABILITIES

220 FOR T = 1 TO 6

230 REM SET UNITS OF CAR DEMAND TO RANGE ZERO TO FIVE

240 LET D = T - 1

250 REM STORE PROBABILITY FOR nAILY DEMAND IN VARIABLE P2

260 LET P2 = PCT)

270 REM TEST RELATIONSHIP BETWEEN EVENTS OF STOCK LEVEL AND

280 REM DAILY DEMAND

290 IF S:«D THEN 370

300 REM COMPUTE PROFIT FOR RELATIONSHIP OF CAR STOCK GREATER

310 REM THAN OR EQUAL TO CAR DEMAND

320 LET Y = S - D

330 LET C5 = FNA(D)

340 GOTO 410

350 REM COMPUTE PROFIT FOR RELATIONSHIP OF CAR STOCK LESS THAN

360 REM CAR DEMAND

370 LET Y = D - S

380 LET C5 = FNB(S)

390 REM COMPUTE EXPECTED PROFIT USING DEMAND PROBABILITY

400 REM VALUE FOR A DAILY DEMAND

97

410 LET C = C5* P2

420 REM ACCUMULATE DAILY DEMk~D EXPECTED PROFITS

430 REM FOR A CAR STOCK

440 LET E = E + C

450 REM END OF LOOP FOR DEMAND EVENT PROBABILITIES

460 NEXT T

470 REM PRINT THE TOTAL EXPECTED PROFIT FOR A CAR STOCK

480 : CAR STOCK ## EXPECTED PROFIT $###.##

490 PRINT USING 480, S, E

500 REM ALTER SEQUENCE OF EXECUTION FOR MAXIMUM PROFIT ROUTINE

510 GOSUB 590

520 REM END OF LOOP FOR STOCK LEVEL EVENTS

530 NEXT L

540 REM OUTPUT SIMULATION SOLUTION

550 PRINT 'MAXIMUM', 'EXPECTED PROFIT', R

560 PRINT 'CAR STOCK', Q

570 STOP

580 REM BEGINNING OF ROUTINE TO FIND MAXIMUM EXPECTED PROFIT

590 IF L = 1 GOTO 640

600 REM TEST RELATIONSHIP BETWEEN PREVIOUS AND CURRENT

610 REM EXPECTED PROFIT FOR MAXIMUM VALUE

620 IF E<R THEN 660
~

630 REM STORE MAXlMUN EXPECTED PROFIT AND CAR SIOCK

640 LET R = E

650 LET Q = S

660 RETURN

670 END Figure 6
Computer Simulation Program.

.. '

98

The application of a computer simulation for a computer

terminal and the use of the BASIC programming language to

build a model of a system was illustrated in this chapter.

The application for the computer simulation began with the

selection of the business system, Continental-Rent-A-Car,

that had a problem to be solved in the operation of the

business. The analyst then followed the processes of analysis

of the system and design of the system for a computer simu­

lation to find a solution for the problem.

The problem for this simulation was to optimize the

behavior of the size of the inventory level of cars to achieve

the goal of the system, maximum profit. Uncertainty in car

daily demand events of the system was characterized by a

discrete probability distribution. The result of the design

of the system was thus a probabilistic model. Entities

(objects), attributes (characteristics), relationships,

exogenous and en dogenous events of the system, &1d the

environment of the system were isolated and defined. Manager,

customer, profit, and car were all entities in this system

and performed events or changed behavior so that the state

of the system was changed.

The design of the model of the system was shown with a

flowchart and the computer simulation pro~~am was coded as

final steps in the computer simulation exercise.

CHAPTER VIr

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The use of computer terminals in the business world was

growing in importance. Computers and computer terminals had

given the business executive easy and quick access to all

types of information in the operation of business and had

provided analysis techniques for business operations never

before possible. As businesses grew in size and complexity,

analysis techniques for making the best decisions were needed.)

Simulation has helped fulfill this need.

(Simulations of systems were representations of systems in

the real world. These representations took the form of models.

With these models proposed alternatives for solutions of prob­

lems were studied and evaluated without affecting the real

system. These simulations then aided the business executives

in the decision-making process.

The use of the methodology of simulation i~ the college

business classroom had been scarce, though it would have

been beneficial for business students to be exposed to this

type of systems analysis technique for the business problem

situations they studied. Simulation also would have

99

100

. prepared the student for his future career in the business

environment. The uses of data processing, computers,and

computer terminals had not received enough emphasis in the

college education of the business student.

This research was conducted to determine if computer

terminals and the BASIC computer language could be success­

fully used to build models of systems used for practical

business applications of simulation.

The purpose of this research study was directed toward

assembling information abou simulation, the BASIC computer

language, and the . computer terminals. From this information

an application of simulation for use by the college business

student was developed.

The documentary-descriptive method of research was used

for this research. A study was conducted of the fundamental

thoughts of simulat on and the process of computer simu­

lation. It was necessary to understand and to learn the

concepts of systems and models and how they were applied in

simulation. The BASIC computer language and computer

terminal processing was researched. Finally, a business

system with a problem was selected and the ~nalysis and the

design processes for simulation were used to bu~~d a model

of the system for the computer to solve the business operation

problem.

101

Conclusions

(There existed a growing interest and importance in the

systems concept, in the study of the business enviro~nt,

and in the use of computers atld computer terminals in the

business world. The systems concept and the technique of

systems analysis were more valuable and extensive with the

aid and capabilities available via computers and programming ..

(The systems concept forced the business systems analyst

to think of a whole rather than a part. This was essential

in the study of the complex syst m of businesses today. The

systems concept made the business systems analyst consider

and investigate the interaction of all parts of a business

system and its environment. It lessened the chances of

overlooking any pertinent influences that affect the

behavior of systems and that affect the problem situations

associated with business system events. The systems concept

was important for making the right decision. ,

The use of time-sharing computer systems and computer

terminals in the business environment was popular as well as

important. The decision-making process in the operation of

businesses had been improved with the analysis techniques

available through the computer. Time-sharing was~the

shared u e of one computer by many differen~ users. The

users hd " access to the facilities of the computer via a

computer terminal. To communicate, the user had to know

a software language of the computer.

102

The BASIC computer language was developed specifically

for the computer terminals and for time-sharing computer

systems. The BASIC computer language was also created for

people not involved in data processing. It was oriented

towards those who only wanted the capabilities of the

computer to assist in an activity of their occupation, educa­

tion, or research. The BASIC computer language code and

programming techniques were designed to be easy to understand

and to learn by anyone outside the field of computer

programming. The computer terminals and the use of BASIC

computer language provided the capabilities necessary for the

activities and the applications of systems analysis and

simulation.

(Systems analysis was important in the business world of

today .) Simulation was used in the work of the . systems

analyst and computer simulation required the two processes

of analysis of system and design of system. ' Simulation was

a symbolic representation of a part of reality; a simulation

of a system was a parallelism of a system in the real world.

A system was a set of objects; the objects were defined

by certain characteristics. These objects ~ere tied together

with definable relationships and these relationships bind

a system together. A system object was called an entity in

simulation. The entity characteristics were called attributes

and the attributes had either different values or remained

the same, when changes occurred in the system state. A

103

sys tem state was a point in time when the values of the

system were determined or evaluated»

The symbolic representation of a system was called a

model. Models were formed of verbal descriptions, pictorial

designs, and mathematical equations. When a model was

constructed from a mathematical equation which was solved

on a computer, this was known as a computer model.

The purpose of systems analysis and of computer simu­

lation was to study how systems behave and to evaluate pro­

posed solutions for problems in systems.

Writing a computer program was not difficult if the

fundamental steps were followed. The technique of writing

computer programs made the programmer think about the whole

as well as its parts just as it was essential in the tech­

nique of systems analysis. The programming steps were:

(1) definition of the problem by specifying data for input,

deciding upon procedures to obtain a solution, and

specifying the data for output; (2) creating a method for the

solution called an algorithm; (3) developing a logical flow

of steps for the a lgorithm shown with the flowchart;

(4) writing the program in a computer lan~age called

coding; and (5) running or executing the program,

The BASIC computer program language provided the

essential concepts and instructions for the operation of the

computer so the second process of computer simulation,

design of system, was accomplished. Design of system was

104

the process of building the model of the system for the

computer.

A BASIC computer program was a number of entries that

were steps for solving a problem, and in a computer simula­

tion, the entries were steps for solving the problem of a

system or steps for studying the behavior of a system. The

BASIC computer entry contained constants, variables, and/or

expressions. Each of these had a purpose in the definition

of a model of a system. Constants were parts of memory or

values that did not change; they were used for the entity

parameters of a system. Variables were the values or

definable parts of memory whose value changed, and they were

used for the entity attributes or system variables . . The

expressions were used to simulate the relationships between

the entities of the system because expressions contained the

constants (parameters of entities), variables (attributes of

entities), and. logical and/or mathematical operators that

bound the system together.

The BASIC computer language commands were instructions

to the computer to p r form certain computer operations.

The computer operations performed the events in the system

that led to a solution of a problem of a system or gave

insight into the behavior of a system. The BAStC input­

assignment commands were used to define the values of entity

attribute parameters and entity attribute variables and were

also used to change the value of the system variables. The

105

BASIC output commands were used to give the solutions of

the computer simulation of a system. The transfer commands

were used to make decisions for the system and caused only

certain events to occur. The function command was necessary

for de ining events and evaluating changes of the state of the

system. The subroutine commands performed the same event

several t imes that caused a change in the state of the

system within a simulation. The system type of conunands made

possible the testing of the model of the system or validating

it and also started and stopped the events of the computer

simulation.

Reconunendations

(The f l lowing recommendations were made based onobser-

vations of the researcher, the related literature reviewed

for this problem and the research conducted for this study.)

Only one application of computer simulation was pre­

sented; therefore, this research problem needs further inves­

tigation. Other simple business systems situations should be

selected and analysis and design of system applied. Models

should be built for these with the BASIC language program and

solved via the use of the computer terminals. It was further

recommended that more complex computer simulations of systems

using the BASIC language and computer terminals be tried.

These should involve the analysis and design of systems based

on uncertainty with continuous p obability distributions and

106

a system that was based on the concept of queuing.

It was recommended that care should be exercised that

the first applications of simulation used by business students

not involve complex systems or systems with difficult proba­

bility concepts. The applications should begin with

systems that have certainty and then progress to systems

with uncertainty.

An a lication for a simulation of a business system

should be selected, analyzed, and designed using the BASIC

computer language. Th model should then be executed on the

computer terminal. The same simulation application should

then be analyzed and designed with a special compute~ simu­

lation language such as SIMSCRIPT, GASP, DYNAMO, or GPSS

and the model execute d on the computer. The two computer

simulations should then be compared for ease, understanding,

and efficiency.

College courses in simulation and computers should be

offered. The curriculum should include: (1) an introductory

course in systems analysis for business students at the

undergraduate level and this course should include the

fundamentals and concepts of computer simulation's, (2) an

introductory course in computers and computer terminal

processing offered to the undergraduate business students,

(3) an introductory course, including both systems analysis

and computer processing should be considered and offered to

107

the students at the undergraduate level, and (4) a course

in computer simulations should be offered at the graduate

level and this course should include the study of the special

software simulation computer languages such as SIMSCRIPT,

GPSS, DYNAMO, and GASP. All undergraduate business students

should be required to take the introductory course in

systems analysis.

BIBLIOGRAPHY

BIBLIOGRAPHY

Dascher, Paul E. "EDP in the Elementary Accounting Course.It
Collegiate News and Views, XXVI (Winter, 1972-73), U-12.

Gupta, Roger. Electronic Information Processing. New York:
The Macmillan Company, 1971.

IBM: GPSS IV Manual. New York: International Business
Machines Corporation Programming Publications, 1971.

ITF: BASIC Terminal User's Guide. New York: International
Business Machines Corporation Programming Publications,
1970.

Laughlin, William M., Jr. "Coffip,uter Related Instruction­
Developments in Economics.' Collegiate News and Views,
XXV (Winter, 1971), 3-6.

Loschetter1 Richard. "The Computer in the Business Class­
room.' Collegiate News and Views, XXV (Winter, 1971), 19.

McGuire, Joseph W. "The Collegiate Business School Today."
Collegiate News and Views, XXV (Spring, 1972), 1-5.

McMillan, Claude, and Gonzalez, Richard F. Systems Analfsis,
A Computer Approach to Decision Models. Homewood, 11.:
Richard D. Irwin, Inc., 1968.

Perritt, Roscoe D. "Innovations in an Elementary Accounting
Program." Collegiate News and Views, XXVI (Fall, 1972),
13-15.

Sass, C. Joseph. BASIC Programming for Business. Boston:
Allyn and Bacon, Inc., 1972.

Sutherland, Angela. "More Problem Solving in Business Math
With the Computer." Journal of Business Education,
XLVI (March, 1971), 262.

Wyman, Forrest Paul. Simulation Modeling: A Guide to Using
SIMSCRIPT. New York: John Wiley and Sons, Inc., 1970.

109

	An Approach to the Problem of Computer Simulations in Business
	Recommended Citation

	tmp.1446571365.pdf.K9jyL

