Combination Therapy of Prostate Cancer Utilizing Functionalized Iron Oxide Nanoparticles Carrying TNF-a and Lactonic Sophorolipids

James Beach
Pittsburg State University

Tuhina Banerjee
Pittsburg State University

Jyothi Kallu
Pittsburg State University

Ryan Higginbotham
Pittsburg State University

Richard Gross
Pittsburg State University

Follow this and additional works at: http://digitalcommons.pittstate.edu/papers_2017

Part of the Polymer Chemistry Commons

Recommended Citation
http://digitalcommons.pittstate.edu/papers_2017/9

This Presentation is brought to you for free and open access by the Research Colloquium 2017 at Pittsburg State University Digital Commons. It has been accepted for inclusion in Paper Presentations by an authorized administrator of Pittsburg State University Digital Commons. For more information, please contact dlwhite@pittstate.edu.
Combination Therapy of Prostate Cancer Utilizing Functionalized Iron Oxide Nanoparticles carrying TNF-α and Lactonic Sophorolipids

James Beach, Tuhina Banerjee*, Jyothi Kallu, Ryan Higginbotham, Richard Gross† and Santimukul Santra*

*DEPARTMENT OF CHEMISTRY, PITTSBURG STATE UNIVERSITY, PITTSBURG, KS 66762
†DEPARTMENT OF CHEMISTRY AND CHEMICAL BIOLOGY, RENSSELAER POLYTECHNIC INSTITUTE, TROY, NY 12180
Outline

- Introduction
 - What are nanoparticles?
 - Tumor Necrosis Factor-alpha (TNF-α) and Lactonic sophorolipids (LSLs)
- Experimental
 - Synthesis of IONPs & Surface Ligand Modification
- Results
 - Characterizations
 - Microscopy Images
 - Biological Assays
- Conclusion
Introduction: What are Nanoparticles?

- Nanoparticles are tiny (1-100 nm) particles that exhibit unique properties and characteristics at nano-scale.
- Many uses in the field of biomedicine and therapeutics
 - Targeted drug delivery
 - Encapsulation of small molecules (drugs, optical dyes)
 - Dosage control and imaging
 - Surface ligand modification (folic acid) for receptor specificity
 - Only treat cells of interest
 - MRI Contrast Imaging (Iron Oxide nanoparticles)
- Our Aim: Treat LNCaP strain prostate cancer with a combination therapy of soluble TNF-α and LSLs with folate-functionalized iron oxide nanoparticles (IONPs)
Introduction: Why use TNF-α and LSLs?

- **TNF-α**
 - Cytokine important in many cellular pathways
 - Apoptosis and proliferation pathways
 - In cancer cells, TNF-α and associated proteins behave aberrantly
 - Nuclear factor kappa B (NF-κB) initiates proliferation unchecked
 - Binding to its receptor, TNFR-1, does not occur in tumor cells
 - Solution: Introduction of exogenous soluble TNF-α may help initiate cell death in tumors
 - Inspired by Aurimune* (gold nanoparticle)

- **LSLs**
 - Glycolipids extracted from non-pathogenic yeast
 - Enhance immune response and reduce inflammation
 - Associated with large decreases in cytokine mRNA
 - Suspected inhibition of NF-κB
 - Implementation inspired by Dr. Richard Gross’ research
 - Hypothesis: Synergy between these two compounds?

* Copyright © 2015 CytImmune Sciences, Inc.
Experimental: Nanoparticle Synthesis

Iron salts

IONP-Synthesis

FeCl₂ + FeCl₃ + PAA

HCl/H₂O

NH₄OH/H₂O

IONP-COOH

Fe

HOOC

COOH

DMF/H₂O

Solvent diffusion

(i) HOOC-PEG-NH₂ (EDC/NHS)
(ii) Propargyl amine (EDC/NHS)

Click chemistry

Folate – N₃

TNF-α & LSLs

Dil

DMF/H₂O

IONP-Dil-TNFα-LSL-FOL

PAA-IONP-Dil

IONP-Dil-FOL

IONP-NH₂

Click chemistry

Folate – N₃

Dil

DMF/H₂O

TFN-α

Dil dye

LSL

PEG
Results: IONP Characterization

Dynamic Light Scattering

FT-IR

100% D = 58.77 nm

1680 cm⁻¹
Results: Fluorescence Microscopy – Dye Internalization
Results: Fluorescence Microscopy – Dye and Combination Therapy
Results: MTT Assay

![MTT Assay Graph]

- Control
- LSL
- TNF-alpha
- Comb

Cell Viability %

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
(Mitochondrial Reduction)

(E,2Z)-6-(4,5-dimethylthiazol-2-yl)-1,3-diphenylformazan (Formazan)
Results: Apoptosis/Necrosis Assay (TNF-α)

Annexin-V/Fluorescein
Hoescht
Ethidium homodimer
Results: Apoptosis/Necrosis Assay (Combination)

Annexin-V/Fluorescein
Hoescht
Ethidium homodimer
Results: Apoptosis/Necrosis Assay Results

Fluorescence unit

- Control
- TNF-alpha
- Comb
- Staurosp
- Inhibitor
Results: Migration Assay

[Graph showing wavelength (nm) on the x-axis and intensity x 10^4 on the y-axis. Two lines represent IONP and IONP-TNF/LSL.]

[Diagram showing a schematic of a cell migration assay with chambers and a channel.]
Conclusions

- Successful synthesis of folate-conjugated IONPs and encapsulation of TNF-α and LSLs
- Results of cytotoxicity assays show up to 80% cell death with combined treatment after 24 hrs
- Significant increase in apoptotic initiation following 24 hr. incubation with TNF-α and combination treatment
- Our results support our hypothesis the synergistic combined therapy
- Next step: Look to in-vivo mouse models for treatment
Thank You!
References

