Salary Distribution in the NFL

Max Ernst
Pittsburg State University

Michael Davidsson
Pittsburg State University

Follow this and additional works at: https://digitalcommons.pittstate.edu/papers_2018

Part of the Income Distribution Commons, and the Sports Studies Commons

Recommended Citation
https://digitalcommons.pittstate.edu/papers_2018/5

This Article is brought to you for free and open access by the Research Colloquium 2018 at Pittsburg State University Digital Commons. It has been accepted for inclusion in Paper Presentations by an authorized administrator of Pittsburg State University Digital Commons. For more information, please contact lfthompson@pittstate.edu.
INTRODUCTION

• The effect of Salary Distribution in the NFL on a team’s winning percentage
 • Positional Spending
 • Superstar Effect
PURPOSE & CONTRIBUTION OF THE STUDY

• Determine if there is an ‘optimal’ strategy for General Managers to construct their lineups
• Are certain positions over/under valued?
• Is there a “Superstar Effect” in the NFL
LITERATURE REVIEW

- Positional Spending is broken down into the following variables:
 - QBS, RBS, FBS, WRS, TES, OLS, DLS, LBS, DBS, STS
 - According to Winsberg 2014, overspending on offensive line has a negative correlation with team performance, and paying more than the league average on quarterback also has negative effects on team performance

- The Current NFL Salary Cap is $167 Million

Example of an NFL Contract

<table>
<thead>
<tr>
<th>Year</th>
<th>Base Salary</th>
<th>Signing Bonus</th>
<th>Miscellaneous</th>
<th>Cap Hit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>$600,000</td>
<td>$2,000,000</td>
<td>$0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2,600,000</td>
<td></td>
<td></td>
<td>$0</td>
</tr>
<tr>
<td>2014</td>
<td>$1,600,000</td>
<td>$2,000,000</td>
<td>$500,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$4,100,000</td>
<td></td>
<td></td>
<td>$500,000</td>
</tr>
<tr>
<td>2015</td>
<td>$2,600,000</td>
<td>$2,000,000</td>
<td>$500,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5,100,000</td>
<td></td>
<td></td>
<td>$500,000</td>
</tr>
<tr>
<td>2016</td>
<td>$3,600,000</td>
<td>$2,000,000</td>
<td>$500,000</td>
<td></td>
</tr>
</tbody>
</table>
Superstar Effect is measured using a Lorenz Curve & with the Gini Coefficient.

A 2014 Study by Philippe Cyrene looked at the superstar effect using the Gini Coefficient on winning percentage in the NHL.

- He found that teams generally do better when they pay one player a higher percentage of team income.
Empirical Model

\[W = f(GINI, \text{SALARY, QBS, RBS, FBS, WRS, TES, OLS, DLS, LBS, DBS, STS}) \]

-where GINI = gini coefficient, SALARY = total salary spent on active roster, QBS, RBS….. STS = Total active dollars spent on Quarterbacks, Running Backs…. and Special Team’s players

- This study uses a pooled cross-sectional time series data set and Pooled Least Squares (PLS) regression model.
DATA

- Data from Spotrac ⇒ Excel ⇒ Eviews
- Sample from all 32 NFL Teams for 5 seasons (2013-2014 through 2017-2018)
- Gini Calculated by:
 \[\Sigma(C \times (P + 2 \times R)) \]

 Where

 - C = Player’s cap hit %
 - P = Player’s weight as % of total population
 - R = % Richer than
Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>8.397685</td>
<td>0.588387</td>
<td>14.27237</td>
<td>0.0000</td>
</tr>
<tr>
<td>GINI</td>
<td>-13.73730</td>
<td>0.901886</td>
<td>-15.23175</td>
<td>0.0000</td>
</tr>
<tr>
<td>SALARY</td>
<td>9.86E-08</td>
<td>2.22E-09</td>
<td>44.49882</td>
<td>0.0000</td>
</tr>
<tr>
<td>QBS</td>
<td>7.10E-09</td>
<td>4.93E-09</td>
<td>1.439574</td>
<td>0.1500</td>
</tr>
<tr>
<td>RBS</td>
<td>-8.72E-08</td>
<td>1.07E-08</td>
<td>-8.171933</td>
<td>0.0000</td>
</tr>
<tr>
<td>FBS</td>
<td>-4.52E-08</td>
<td>3.95E-08</td>
<td>-1.142986</td>
<td>0.2531</td>
</tr>
<tr>
<td>WRS</td>
<td>1.23E-08</td>
<td>5.77E-09</td>
<td>2.124523</td>
<td>0.0337</td>
</tr>
<tr>
<td>TES</td>
<td>-2.62E-08</td>
<td>1.12E-08</td>
<td>-2.335040</td>
<td>0.0196</td>
</tr>
<tr>
<td>OLS</td>
<td>-7.91E-08</td>
<td>5.92E-09</td>
<td>-13.35363</td>
<td>0.0000</td>
</tr>
<tr>
<td>DLS</td>
<td>1.64E-08</td>
<td>4.21E-09</td>
<td>3.899507</td>
<td>0.0001</td>
</tr>
<tr>
<td>LBS</td>
<td>5.23E-09</td>
<td>5.94E-09</td>
<td>0.881970</td>
<td>0.3778</td>
</tr>
<tr>
<td>DBS</td>
<td>-4.82E-08</td>
<td>5.15E-09</td>
<td>-9.368872</td>
<td>0.0000</td>
</tr>
<tr>
<td>STS</td>
<td>-1.35E-07</td>
<td>2.21E-08</td>
<td>-6.075180</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared: 0.360884
Adjusted R-squared: 0.359383
S.E. of regression: 2.480066
Sum squared resid: 31411.77
Log likelihood: -11908.88
F-statistic: 240.3107
Prob(F-statistic): 0.000000

Mean dependent var: 7.975000
S.D. dependent var: 3.098588
Akaike info criterion: 4.656983
Schwarz criterion: 4.673591
Hannan-Quinn criterion: 4.662797
Durbin-Watson stat: 1.419671
THE EMPIRICAL MODEL

Findings

● NOT Significant Variables (3):
 ○ QBS, FBS, and LBS

● Significant Variables (9):
 ○ GINI, SALARY, RBS, WRS, TES, OLS, DLS, DBS, STS
 ■ General Managers can obtain 1 more win by:
 ● GINI: -13.74 coefficient.
 ● Salary: + $10,141,987.83
THE EMPIRICAL MODEL

Positional Results

General Managers can obtain 1 more win by:

Overpaid (most to least):
- STS: $7,407,407.41
- RBS: $11,467,889.91
- OLS: $12,642,225.03
- DBS: $20,746,887.97
- TES: $38,167,983.93

Underpaid: (most to least)
- DLS: $60,975,609.76
- WRS: $81,300,813.01
THE EMPIRICAL MODEL

Conclusions

- There is no “superstar effect” in the NFL
- More spending on the active roster leads to more wins
- There is evidence that certain positions are overpaid/underpaid
 - Findings agree with Winsberg 2014 that offensive line is overvalued.
 - Inconclusive evidence as to the effect of quarterback spending on team wins
- Recommended that further research required to understand fully
QUESTIONS?