

Table 3-2. Instructions vs. Address Mode Cross Reference (Continued)

Sourc" Boolean
Addressing
Mode tor

Formls! Operation Expression Operand

BHS(rell Branch if Higher or Same 7 C =0 AEL
BITA (opr) Bitls) Test A with Memory A-M AIMM

A OIR
A EXT
A IND,X
A IND,Y

BITa (opr) Bills) Test B with Memory B-M alMM
a OIR
a EXT
a INO,X
a IND,Y

BlE Irell Branch if s Zero 7Z+(N 9VI-l AEL
BLO(rel) Branch if lower 7C=1 AEL
BlS I reI) Branch if lower or Same 7C+Z=1 REL
BlT(rel) Branch If<Zero 7N 9V:l AEL
BMI(ntH Branch if Minus 7 N= 1 AEL
BNE(rell Branch if Not.: Zero 7Z=0 AEL
BPL (rell Branch if Plus 7 �N�~�O� AEL

BRA (rell Branch Always 7 I =1 AEL

BRClR(opri Branch if Bit(s) Clear 7Me mm:Q OIR

(msk IND ,X
(rell IND,Y

BRN(rel) Branch Never 7 I =0 REL

BRSET(opr) Branch if Bitls) Set 7lMlemm=0 OIR
Imsk) IND,X
I rei) IND,Y

BSETlopr) Set Bit(s) M+mm-M OIR
(msk) IND,X

IND,Y

BSR Irel) Branch to Subroutine See Special Ops AEL

BVClrel) Branch if Overflow Clear 7V=0 REL

BVS(rell Branch it Overflow Set 7V=1 REL

CSA Compare A to B A-B INH

CLC Clear Carry Bit O-C INH

Cli Clear Interrupt Mask 0-1 INH

CLR (opr! Clear Memory Byte O-M EXT
INO,X
IND,Y

ClRA Clear Accumulator A O-A A INH

ClRB Clear Accumulator B 0-8 B INH

CLV Clear Overflow Flag O-V INH

CMPA (opr) Compare A to Memory A-M AIMM
A OlA
A EXT
A IND,X
A INO,Y

CMPB (oprl Compare B to Memory B-M B IMM
8 DIA
B EXT
B IND,X
81NO,Y

COM (oprl 1'5 Complement Memory Byte $FF-M-M EXT
INO.X
IND,Y

COMA 1'5 Complement A $FF-A-A AINH

COMB 1's Complement B $fF- B-B 81NH

M68HC11 PM/AD

Machine Coding .
(Hexadecimal) •

Opcode Operandls) >-
c:c

24 rr 2
85 ii 2
95 dd 2
B5 hh II 3
A5 ff 2

18 AS ff 3
C5 Ii 2
05 dd 2
F5 hh II 3
ES ff 2

18 E5 ff 3
2F rr 2
25 rr 2

23 rr 2
2D rr 2
2B rr 2
26 rr 2
2A rr 2

20 rr 2

13 dd mm rr 4

IF ff mm rr 4
18 IF ff mm rr 5

21 rr 2

12 dd mm rr 4
IE ff mm rr 4

18 IE ff mm rf 5

14 dd mm 3
lC ff mm 3

181C ffmm 4

80 rr 2

28 rr 2

29 rr 2

" I

OC I

OE I

7F hh II 3
6F ff 2

186F ff 3
4F I

5F I

OA 1

81 ii 2
91 dd 2
Bl hh II 3
Al ff 2

18 Al ff 3
Cl ii 2
01 dd 2
Fl hh 1\ 3
El ff 2

18 El H 3

73 hh 1\ 3
63 H 2

1863 tf 3

43 I

53 1

• U
>

<.J 5

J
2
J
4

4
S

2
J
4
4
5

J
J
3

J

3

J
3
3
6

7
8

3

6
7
8

6
7
B

6
3
3

2

2
2

6
6
7

2

2

2

2
3
4
4
5
2
3
4
4

5

6
6
7

2

2

CondiTion Codes
X H I

-

-

-
-

0

N Z V C

I t 0

1 t 0 -

-

I 1 0

t 1 I t
0

0 1 0 a

0 I 0 a
0 I 0 a

a
t I I I

t t I I

t I 0 1

I I 0 1

t I 0 1

MOTOROLA
3· 15

Table 3·2. Instructions vs. Addressing Mode Cross Reference (Continued)

Source
Formls) Operltion

CPO lopr) C,)mpare 0 to Memory
1S-Bit

CPXlopr) Compare X to Memory
IS-Bit

CPY lopr) Compare Y to Memory
IS-Bit

CAP. Decimal Adjust A

OEC(opr) Decrement Memory Byte

'"

OECA Decrement Accumulator A

DECa Decrement Accumulator B

DES Decrement Stack Pointer

DEX Decrement Index Register X

DEY Decrement Inde" Register Y

EOAA loprl Exclusive OA A with Memory

EORS (Opr) Exclusive OR 8 with Memory

FOI" Fractional Oivide16 bv 16

IOIV Integer Oivide 16 by 16

INClopr) Increment Memory 8yte

INCA Increment Accumulator A

INCB Increment Accumulator B

INS Increment Stack Pointer

INX Increment Inde" Register X

INY Increment Inde" Register Y

JMP(Ollrl Jump

JSR (oprl Jump to Subroutine

LDAA (oprl Load Accumulator A

MOTOROLA
3·16

Addres:sing
Boolean Mode for

Expression Operand

O-M:M 1 IMM
CIR
EXT
IND ,X
INO,Y

IX-M: M~1 IMM
OIR
EXT
IND,X
IND,Y

IV-M:M+ 1 IMM
OIR
EXT
IND,X
IND.Y

Adjust Sum to BCD INH

M-l-M EXT
INO,X
IND,Y

A-I-A AINH

B-I-8 B INH

SP-l-SP INH

IX-I-IX INH

IV-l-IY INH

A9M-A AIMM
A DIA
A EXT
A IND,X
A IND,Y

89M-B BIMM
BOlA
B EXT
B IND,X
BIND Y

OIiX-IX; r-D INH

OIiX-IX; r-O INH

M+l-M EXT
IND,X
INO.Y

A I-A AINH

8 1-8 B INH

SP l-SP INH

IX'" 1 IX INH

IY ~ I-IY INH

See Special Ops EXT
INO.X
INO.Y

See Special Ops OIR
EXT
IND.X
INO.Y

M-A A IMM
A OIR
A EXT
A IND,X
A INO,Y

Machine Codi~g .. 0
IHexadecimell 11 U Condition Cod!!!

Opcode Operandls)
;. >
a:I (.) 5 X H I N Z " C

lA 83 il kk 4 5 t I t t
lA 93 dd 3 6
lA aJ hn II 4 7
lAAJ H 3 7
CD AJ H 3 7

8C ji kk 3 4 · I t t t
9C dd 2 5
BC nn II 3 6
AC H 2 6

CD AC H 3 7

188C il kk 4 5 t t 1 I
189C dd 3 . 6
18 BC hh II 4 7
lA AC H :3 7
18 AC H 3 7

'19 1 2 · t I t I
7A nh II 3 6 · I t I
SA H 2 6

186A H 3 7
4A 1 2 I t I
SA 1 2 t t I
34 1 3

09 1 3 t
1809 2 4 t

88 ii 2 2 I t 0
98 dd 2 3
88 hh II :3 4
AS H 2 4

18 A8 H 3 5

C8 ii 2 2 · I I 0 .
08 dd 2 3
F8 hh II :3 4
E8 tf 2 4

18 EB tf 3 5
03 1 41 . t 1 I
02 1 41 . I 0 I
7C hh II 3 6 · I I t
ec H 2 6

186C H :3 7

4C 1 2 t t I
SC 1 2 I 1 I
31 1 3

08 1 3 . I
1808 2 4 . I

7E hh II 3 3
6E H 2 3

186E H 3 4

90 dd 2 5
BO hn II 3 6
AD H 2 6

18 AD H :3 7

86 ii 2 2 · I t 0
96 dd 2 :3
B6 nn II 3 4
A6 tf 2 4

18 A6 ff 3 5

M68HC11PM/AD

Table 3·2. Instructions ys. Addressing Mode Cross Reference (Continued)
Addreuing Machine Coding . II

Source Boole.n Mod. for (He:udecimall . Y Condition Codas
Formlsl Operation Expression Operand

>. >-
5 X H I N Z C Opcod. Operandls! CD (J V

LOAS loprl Load Accumulator S M-B BIMM C6 ii 2 2 t I 0
B OIR 06 dd 2 3
B EXT Fe hh II 3 4

B INO.X E6 If 2 4
B INO.Y 18 E6 If 3 5

LOO loprl Load Doubl. Accumulator 0 M-A.M+l-B IMM CC il kk 3 3 - - t t 0
DIR DC dd 2 4
EXT FC hh II 3 5
IND.X EC If 2 5
IND .Y 18 EC If 3 6

LOS lopr! Load Stack Pointer M :M~I-SP IMM 8E il kk J J - t I 0
DIR 9E dd 2 4

EXT BE hh II J 5
IND.X AE H 2 5

" ". IND .Y 18 AE If 3 6

LOX loprl Load Indel(Register X M:M+l-IX IMM CE jj kit J 3 t t a
DIR DE dd 2 4

EXT FE hh II 3 5
IND.X EE If 2 5
IND .Y CO EE If 3 6

LOY loprl Load Ind .. Registar Y M:M + l-IY IMM 18 CE jj kk 4 4 t t 0
DIR 18 DE dd 3 5
EXT 18 FE hh II 4 6
IND.X 1A EE If 3 6
IND.Y 18 EE If 3 6

LSLlopr! Logical Shift Laft - EXT 78 hh II 3 6 - · t t t t
CHIIIDID-o IND.X 68 If 2 6

C b7 bO IND.Y 1868 ff 3 7
LSLA A INH 48 I 2
LSLB B INH 58 1 2

LSLD Logical Shift Left Double [J-{C - -:::n-0 INH 05 , 3 - - - I t t t
C b15 bO

LSR lopr! Logical Shift Right EXT 7. hh II 3 6 - · a t t I - IND.X 64 If 2 6 O-CIlIlIIIJ-O
b7 bO C INO.Y 1864 ff 3 7

LSRA AINH .w , 2
LSRB B INH 54 , 2

LSRD Logical Shift Right Doubl. [J-{C - -:::n-O INH 04 1 3 · 0 t t t
C b15 bO

MUL Multiply 8 by 8 AxB-D INH 3D I 10 · t
NEG (optl ~·s Complement Memory Byte O-M-M EXT 70 hh II 3 6 t , t 1

INO.X 60 If 2 6
IND.Y 1860 If 3 7

NEGA Zs Complement A O-A-A AINH 40 1 2 1 t 1 I
NEGB Z5 Comolement B 0-8-B B INH 50 1 2 1 t I 1
NOP No Ooeration No Operation INH 01 1 2 -
ORAAloprl OR Accumulator A Unclusi"e" A .. M-A AIMM SA ii 2 2 t t a

A OIR 9A dd 2 3
A EXT BA hh II 3 4

A IND.X AA If 2 4
A IND.Y 18AA If 3 5

ORABloptl OR Accumulator B (lndusi"e' B+M-B B IMM CA ii 2 2 I t 0
B DIR DA dd 2 3
B EXT FA hh II 3 4
B IND.X EA If 2 4
B IND.Y 18 EA ff J 5

PSHA Push A onto Slack A-Slit. SP ",SP-l AINH 36 1 3

. ,~ ~~6 "": ';I /'·'.·_. ,",I <'-. r"" " :' ~.' . ~ .• ' .. • ,-' c .~ ,,? .. - . l. ~ .. '. : ;~.,.rtl~-: : ~ ... :,".:',\ .: • •• ,~.'t'; ; , .. "t:'i:'!t:'!' ,

M68HC11PM/AD MOTOROLA
3-17

Table 3·2. Instructions vs. Addressing Mode Cross Reference (Continued)

Source
Formlsl Operation

PSHB Push B onto Stack

PSHX Push X onto Stack ILo Fir1t)

PSHY Push Yonto Stack ILo First'

PULA Pull A from Stack

PULB Pull B from StaCk

PULX Pull X from Stack (Hi First)

PULY Pull Y from Stack (Hi Firstl

ROL (oprl Rotate Left

ROLA
ROLB

ROR (apr! Rotate Right

ROrlA
RORB

RTI Return from Interrupt

RTS Return from Subroutine

SaA Subtract B trom A

saCA (oprl Subtract with Carry from A

SBCB (oprl Subtract with Carry from B

SEC Set Carry

SEI Set Interrupt Mask

SEV Set Overflow Flag

STAA (apr) Store Accumulator A

STAB (opr) Store Accumula!or B

STD (oprl Store Accumulator D

STOP Stoo Internal Clocks

STS (apr! Store Stack Pointer

STX (oprl Store Index AegistlH' X

STYlopr! Store Index Register Y

MOTOROLA
3·18

Bool.,."
Expression

B-Sdot.SP=SP-l

IX-Stk.SP=SP-2

IY-Stk.SP.,.SP-2

SP",SP.l.A-Stk

SP=SP.l.B-Stk

SP ... SP.2.IX-Stk

SP,..SP·2,IY Stk

o --m:rrIiJJ-{]
C b7 -bO C

D--IT.!IIIDJ-O
C b7 - bO C

See Special Ops

See Special Ops

A-B-A

A-M-C-A

B-M-C-B

l-C

1-1

I-V
A-M

B-M

A-M. B-M+l

SP-M:M+l

IX-M:M+l

IY-M:M.l

Addr"s.sing Macnine Codin~
Modefor IHexadecimal)
Operand Opcode Operand(sl

BINH 37

INH 3C

INH 18 3C

AINH 32
BINH l3

INH 38

INH 18 38

EXT 79 hh II

IND.X 69 If
IND.Y 18 69 If

AINH 49
BINH 59

EXT 76 hh II

IND .X 66 If
IND .Y 18 66 H

AINH 48
B INH 56

INH 38

INH 39
INH 10

A IMM 8:2 ii
A DIR 92 dd
A EXT B2 hh II
A IND.X A2 tf
A IND.Y 18 A2 tf

B IMM C2 ii
B OIR 02 dd
B EXT F2 nh II
B IND.X E2 tf
B IND.Y 16 E2 tf

INH 00
INH OF

INH 08

A OIR 97 dd
A EXT B7 nil II
A INO.X A7 If
A INO.Y 18 A7 If

B DIR 07 dd
B EXT F7 hh II
B INO.X C7 If
B INO.Y 18 E7 If

DIA DO dd
EXT FD nh II
INO.X ED If
IND.Y 18 ED If

INH CF

OIA 9F dd
EXT BF nh II
IND.X AF If
INO.Y 18 AF If

OIR OF dd
EXT FF hh II

IND.X EF If

IND.Y CD EF If

CIR 18 DF dd
EXT 18 FF hh II
IND.X IA EF If
INO.Y 18 EF If

. 0
II) U Condition Codes >- >

.j(= U S H I N Z V C

1 3

1 4

2 5

1 4

1 4

1 5

2 6

3 6 I 1 1 I
2 6
3 7
1 2
1 2

J 6 1 1 1 1
2 6
3 7
1 2
1 2

1 12 t I 1 1 t 1 I I
1 5 .
1 2 1 t t I
2 2 I 1 1 1
2 3
3 4

2 4

3 5

2 2 1 1 1 1
2 3
3 4
2 4
3 5

1 2 . . 1

1 2 1 . .
1 2 . . 1 .
2 3 1 1 0
3 4

2 4
3 5

2 3 . 1 t 0
3 4
2 4
3 5

2 4 1 1 0
3 5
2 5
3 6

I 2

2 4 1 1 0
3 5
2 5
3 6

2 4 1 I 0
3 5
2 5
3 6

J 5

I-
. , 1 0

4 6
3 6
J 6

M68HC11PM/AD

Table 3·2. Instructions vs. Addressing Mode Cross Reference (Concluded)

Source
Addre"ing Machine Coding .. .

Boolean Mode for (Hexadecimall • U Condition Codes
Form(s.) Operation Expression Operand Opcode Operandls)

>. >- s IXI U X H I N Z V C
SUBA loprt Subtract Memory from A A-M A AIMM 80 ii 2 2 I I t t

A DIA 90 dd 2 J
A EXT BO hh II 3 4
A IND.X AO H 2 4
A IND.Y 18 AO H 3 5

SU8B loprl Subtract Memory from B 8-M B 81MM CO ii 2 2 I I t I
8 DIA 00 dd 2 3
8 EXT Fa hh II 3 4
8IND.X EO If 2 4
B IND .Y 18 EO If 3 5

SUBD loprt Subtract Memory from 0 O-M:M-rl 0 IMM 83 il ilk 3 4 I t t t
OIR 93 dd 2 5
EXT B3 hh II 3 6
IND.X A3 If 2 6
IND ,Y 18 A3 If 3 7

SWI Software Interrupt See Special Ops INH 3F 1 14 1
TAB Transler A to B A-B INH 16 I 1 2 I· t t 0
TAP Transfer A to CC Register A-CCR INH 06 1 2 t I t t t t t I
TBA Transfer B to A B A INH 17 1 2 t t 0
TeST TEST (Only in Test Modesl Addre" BusCounts INH 00 1 .
T?A Transfer CC Aegister to A eCA A INH 07 I 1 2
TST (oprl Test for Zero or Minus M-O EXT 70 hh II 3 6 t I a 0

IND.X 60 If 2 6
INO.Y 186D If 3 7

TSTA A-a A INH 40 1 2 · I I 0 0

TSTa 8-0 B INH SO 1 2 · I I 0 0

TSX Transfer Stack Pointer to X SP ·1-IX INH 30 1 3

TSY Transfer Stack Pointer to Y SP .,.1 IY INH 1830 2 4- · .
TXS Transfer X to Stack Pointer IX-l-SP INH 35 1 3

TYS Transfer Y to Stack Pointer IY-l SP INH 1835 2 4 · . .
W.o.I Wait for Interrupt StackR89s1W.o.IT INH 3E 2 -
XGOX Exchange 0 witl:! X IX-D.O-IX INH 8F 1 3

XGOY Exchange 0 with Y IY-O. D-IY INH 18 SF 2 4

NOTES:
Cycle:
* '" Infinity or until reset occurs

** .. 12 cycles are used b89inning with the opcode fetch. A wait state is entered which remains in effect for an integer number
of MPU E-clock cycles (n) until an interrupt is recognized. Finally. two additional cycles are used to fetch the appropriate

interrupt vector (total = 14 + n).

Operand(sl:
dd - 8-bit direct address $0000 - $ooFF. (High byte a"umed to be $00,)
ff 8-bit positive offset $00 (0) to $FF (255) added to index.
hh High order byte of 16-bit extended address.

One byte of immediate data.
B High order byte of H,·bit immediate data.
kk Low order byte of 16-bit immediate data.
II Low order byte of 16-bit extended address.
mm 8-bit mask (set bits to be affected).
rr Signed rIMative offset $80 (- 12S1 to $7F (+ 1271.

OHset relative to the address following the machine code offset byte.

Condition Codes:
Bit not changed.

o Always cleared (logiC 0).
Always set (logic n.
Bit cleared or set depending on operation.
Bit may be cleared. cannot become set.

M68HC11PMI AD MOTOROLA
3-19/ 3· 20

3.1 INTRODUCTION

SECTION 3
ADDRESSING MODES

This section describes the M68HC11 MCU addressing modes. Six addressing modes can btl

used to reference memory; they include: immediate, direct , extended, indexed (with either of tWL)
16·bit index registers and an 8-bit offset), inherent, and relative. Some instructions require an ad
ditional byte before the opcode to accommodate a multi-page opcode map; this byte is called .1

prebyte.

Each of the addressing modes (except inherent) results in an internally generated double by to
value referred to as the effective address. This is the resultant value of a statement operand field
and is the value that appears on the address bus during the memory reference cycle. The ad·
dressing mode is an implicit part of every M68HC11 MCU opcode.

Bit manipulation instructions actually employ two or three addressing modes during execution
but are classified by the addressing mode used to access the primary operand. All bit manipula
tion instructions use immediate address mode to fetch a bit mask and branch versions uso
relative address mode to determine a branch destination.

The following paragraphs provide a description of each addressing mode and the prebyte in,
struction. In these descriptions the term effective address is used to indicate the memory ad·
dress from which the argument is fetched or stored, or from which execution is to proceed.

Also included, after the addressing mode and prebyte instruction descriptions, are opcode map
page illustrations and cross-reference tables pertaining to opcodes vs instructions and instruc·
tions vs addressing modes. These opcode map illustrations and tables are used for quick cross·
referencing purposes during machine code/assembly language programming and debugging
operations.

3.2 IMMEDIATE ADDRESSING

In the immediate addressing mode, the actual argument is contained in the byte(s) immediately
following the instruction, where the number of bytes matches the size of the register. These aro
two, three, or four (if prebyte is required) byte instructions.

Machin~ code byte(s) that fo lfow the operation code are the value of the statement operand field
rather than the address of a value. The effective address of the instruction in this case j::J

specified by the character # sign and implicitly points to the byte following the opcode. The im
mediate value is limited to either one or two bytes depending on the size of the register included
in the statement. Examples of several statements which use the immediate addressing modo
are shown as follows. Symbols and expressions used in these statements are defined im
mediately after the· examples.

M68HC11 PM / AD MOTOprjl f ·
:! 1

Machine Code Label
86 16
C8 34
81 24

86
CC
CC

86
86
CE

07
12
00

12
41
10

34
07

00

CAT

Operation
LDAA
EaRS
CMPA
EOU

LDAA
LDD
LDD

LDAA
LDAA
LOX

Operand Comments
#22 #22-ACCA
#$34 XOR ($34,ACCS)
#% 100100 CMPA#$24
7 CAT SAME AS 7

#CAT 7-ACCA
#$1234
#7 7-ACCA:ACCS

#@22 OCTAL
#'A ASCII
#TABLE ADOR (TABLE)-X

Examine the above machine code and observe the value of each statement operand field ap
pears in byte(s) immediately following the opcode. Note that the operand field for immediate ad
dressi ng begins with the character # sign. The character # sign is used by the assembler to
detect the immediate mode of addressing.

A variety of symbols and expressions can be used following the character # sign. Character
prefixes used in the above example are defined as follows:

Prefix
None

$
@

%

Definition
Decimal
Hexadecimal
Octal
Binary
Single ASCII Character

In the last statement of the above example, the immediate bytes consist of the value of the sym
bol TABLE. The value of any symbol is equal to its address except when used in the label field of
an equate (EOU) statement. The value of a symbol that appears in the label field of an EOU direc
tive is defined by the value in the operand field of the statement.

3.3 DIRECT AND EXTENDED ADDRESSING

Direct addressing allows the user to access $0000 through $OOFF using two byte instructions
and execution time is reduced by eliminating the additional memory access. In most applica
tions, th is 256-byte area is reserved for frequently referenced data. In the M68HC11 MCU, soft
ware can configure the memory map so that internal RAM, and/or internal registers, or external
memory space can occupy these addresses.

In the direct addressing mode, the least significant byte of the effective address (operand) is
contained in a single byte following the opcode and the most significant byte is assumed to be
$00. The length of most instructions using the direct addressing mode is two bytes: one for the
opcode ~nd one for the least significa~t byte of the effective address.

I n the extended addressing mode, the effective address of the instruction appears explicitly in
the two bytes following the opcode. Therefore, the length of most instructions using the extend
ed addressing mode is three bytes: one for the opcode and two for the effective address. The se
cond and third bytes (following the opcode) contain the absolute address of the operand. These

MOTOROLA
3-2

M68HC11 PM .' AD

are three ?r four (if prebyte is required) byte instructions: one or two for the opcode, and two for
the effective address. Instructions from the second, third, and fourth opcode map pages require
a page select prebyte prior to the opcode byte.

Thus, the direct and extended addressing modes differ in two respects: (1) the memory range
t~at can be accessed and (2) the length of the instruction. Using direct addressing, an instruc
tion can reference memory only within the range SOOOO-$OOFF, whereas in the extended address.
ing mode the entire memory space can be accessed.

There are some instructions that provide an extended addressing mode but not a direct mode.
These instructions are members of a group called "read-modify·write" instructions (opcodes
$40-$75 on all opcode pages except JMP and TST) which operate directly on memory, M, and
have the following form:

< operation> M - M

The INC, DEC, CLR, and COM instructions are members of this group and each has an extended
addressing mode bu t no direct mode. The following examples show the direct and extended ad·
dressing modes.

Machine Code Label Operation Operand Comments
83 00 12 SU8D CAT FWD REF TO CAT

CAT EQU S12 DEFINE CAT=$12

93 12 SU8D CAT BKWD REF TO CAT
7F 00 12 CLR CAT EXTENDED ONLY

In the above sequence, the first reference to the CAT symbol was a forward reference and the
assembler selected the extended addressing mode. The second reference was a backward
reference which enabled the assembler to know the symbol value when processing the state·
ment, and the assembler selected the direct addressing mode. The last reference to CAT is also
a backward reference to a symbol in the direct area, and the extended addressing mode was
selected because the particular instruction does not have a direct addressing mode. Some
assemblers allow the direct or extended addressing modes to be forced even when other condi
tions would suggest the other mode.

3.4 INDEXED ADDRESSING

In the indexed addressing mode, either the X or Y index register is used in calculating the effec-
• tive address. In this case, the effective address is variable and depends on two factors:

the current contents of the X or Y index register being used, and
the 8-bit unsigned offset contained in the instruction.

This addressing mode allows referencing any memory location in the 64K byte address space.
These are usually two or three (if prebyte is required) byte instructions, the opcode plus the 8-bit
offset.

In microprocessor-based systems, instructions usually reside in read only memory (ROM).
Therefore, the offset in the instruction should be considered a static value determined at
assembly time rather than during program execution. The use of dynamic single byte offset is

f

M68HC'1PM/AD MOTOROLA
3-3

facilitated with the use of the add ACCS to index register (ASX) instruction. More complex ad·
dress calculations are aided by the 16·bit arithmetic capability of the 16-bit 0 accumulator and
the exchange 0 with X (XGDX) and exchange 0 with Y (XGDY) instructions.

If no offset is specified or desired, the instruction will contain $00 in the offset byte. The offset
is an unsigned single byte value that when added to the current value in the index register yields
the effective address of the operand leaving the index register unchanged. Because the offset
byte is unsigned, a negative offset cannot be specified.

Examples of the indexed addressing mode are shown in the following statements where EA in
dicates effective address.

Machine Code Label Operation Operand Comments
E3 00 ADDD X EA=(X)
E3 00 ADDD ,X EA=(X)
E3 00 ADDD O,X EA=(X)

E3 04 ADDD 4,X EA= (X) +4
CAT EQU 7 DEFINE CAT= 7

E3 07 ADDD CAT,X EA= (X) + 7

E3 22 ADDD $22,X EA = (X) + $22
E3 22 ADDD CAT"S/2 + 6,X EA = (X) + (CAT"8/2 + 6)

3.5 INHERENT ADDRESSING

In the inherent addressing mode, all of the information to execute the instruction is contained in
the opcode. The operands (if any) are registers and no memory reference is required. These are
usually one or two byte instructions.

Many M68HC11 MCU instructions do not require an operand because the effective address is in
herent within the instruction. For instance, the ABA instruction causes the CPU to add the con
tents of accumulators A and 8 and place the result in accumulator A. The instruction INCa
causes the contents of accumulator B to be incremented by one. Similarly, the INX instruction
causes the index register X to be incremented by one. These three inherent instruction ex·
amples, shown in the following statements, do not require an operand and require only a single
machine code byte.

Machine Code
1B
5C
08

Label

3.6 RELATIVE ADDRESSING

Operation
ABA
INCB
INX

Operand Comments
A+B-A
B+1-8
X+1-X

The relative addressing mode is used for branch instructions. If the branch condition is true, the
contents of the 8-bit signed byte following the opcode (offset) is added to the contents of the
program counter to form the ef fective branch address; otherwise, control proceeds to the next
instructicn. These are usually two byte instructions.

MOTOROLA
3-4

M68HC11PMI AD

In both the direct and extended addressing modes, the address contained in the operand byte(s)
is an absolute numerical address. The relative addressing mode is used only for branch instruc·
tions and specifies a location relative to the current value to the program counter. The program
counter wrll always point to the next statement while the addition is being performed. A zero off·
set byte will result in a no branch instruction regardless of the test involved.

Branch instructions, other than the branching versions of bit manipulation instructions,
generate two machine code bytes: one for the opcode and one for the relative offset. Because it
Is desirable to branch in either direction, the offset byte is a signed twos complement offset
with a range of - 128 to + 127 bytes. The effective branch range must be computed with respect
to the address of the next instruction. For branch instructions that consist of two bytes, the next
instruction is at PC + 2. If the branch destination address is defined as R, the range is computed
as follows:

(PC + 2) - 128 ~ R ~ (PC + 2) + 127
or

PC -126~ R:s PC + 129

The above result indicates that the destination of the branch instruction must be within -126 to
+129 memory locations of the first byte of the branch instruction. If it is desired to transfer con·
trol beyond this range, then the J MP or JSR instruction must be used. Examples of the relative
addressing mode are shown in the following statements.

Machine Code Label
24 08
20 00 THERE
22 FC WHERE

27 FE HANG
27 FE
7E 10 00 LBCe

80 F7

M68HC11 PM/AD

Operation Operand
BCC LBCe
BRA WHERE
BHI THERE

BEQ HANG
BEQ
JMP $1000

BSR HANG

Comments
L·O·N·G BCC
FORWARD BRANCH
BACKWARD BRANCH

BRANCH TO SELF
*MEANS "HERE"

MOTOROLA
3-5

The following are examples of simple, signed, unsigned conditional, and bit manipulation
branches.

MOTOROLA
3-6

.------SIMPLE BRANCHES -------,

Test
N=1
Z=1
V=1
C=1

Test
r>m
r~m

r=m
rsm
r<m

Mnemonic
BAA
BAN
BSA

Opcode Cy~les
20 3
21 3
eo 7

SIMPLE CONDITIONAL BRANCHES

True Opcode False Opcode
BMI 2B BPL 2A
BEQ 27 BNE 26
BVS 29 BVC 28
BCS 25 BCC 24

SIGNED CONDITIONAL BRANCHES

True Opcode False Oecode
BGT 2E BlE 2F
BGE 2C BlT 20
BEQ 27 BNE 26
BlE 2F BGT 2E
BlT 20 BGE 2C

UNSIGNED CONDITIONAL BRANCHES

Test True Opcode False Opcode
r>m BHI 22 BlS 23
r~m BHS/BCC 24 BLO/BCS 25
r=m BEQ 27 BNE 26
rsm BLS 23 BHI 22
r<m BlO/BCS 25 BHS/BCC 24

BIT MANIPULATION BRANCHES

BRClR - Branch if all selected bits are clear
(opcode) (operand addr) (mask) (rei offset)
M-mm = 07 M = operand in memory; mm = mask

BRSET - Branch if all selected bits are set
(opcode) (operand addr) (rei offset)
(M)emm = 07 M = operand in memory; mm = mask

M68HC11PM/AD

3.7 PREBYTE

In order to expand the number of instructions used in the MC68HC11 MCU, a prebyte instruction
has been added to certain instructions. The instructions affected are usually associated with the
Y index register. Instructions which do not require a prebyte reside in the opcode map page 1. In·
struct ions requiring a prebyte reside in the opcode map pages 2 through 4. The opcode map
prebyte assignment is $18 for page 2, $1A for page 3, and $CD for page 4. Figures 3·1 through 3·4
illustrate opcode map page 1 through 4, respectively.

The opcode map pages illustrate the instruction set vs opcode relationships and can be used
during logic analyzer debugging operations. From a binary logic analyzer trace, machine code
bytes can be reverse assembled to yield assembly language mnemonics to aid in the debugging
operation. First a machine code byte is broken into four bit halves. The higher order half iden
tifies a column in the opcode map and the low order half then identifies the line within that col
umn where the assembly language mnemonic can be read.

Table 3-1 provides the opcode vs instruction cross·reference listing which is useful for machine
code reverse assembly. Some users will find this table easier to use than the opcode map pages.
In addition to showing the assembly language mnemonic and addressing mode, this table also
lists operand construction details and gives the total number of E cycles required to execute the
instruction. Table 3-1 is organized by opcode, operands, instruction, number of cycles, and ad
dressing mode.

Table 3·2 provides the instruction vs addressing mode cross-reference listing which is useful for
hand assembly of machine code or as a condensed summary of important instruction set
details. For hand assembly the user would write out a program using source instruction
mnemonics and notations. Then each mnemonic would be looked up in Table 3·2 to translate the
mnemonic i.nto the appropriate opcode taking into account the desired addressing mode. Table
3-2 is organized by instruction (source form), operation, Boolean expression, addressing mode
for operand, machine coding (opcode and operand), number of bytes, number of cycles, and con
dition code register bit states.

M68HC11PM / AD MOTOROLA
3 -7

OIR

ACCA ACC9
INH INH REL INH ACCA ACCS IND.X EXT IMM DIR IND.X EXT IMM DIR IHD.X EXT

~ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 lOll "00 1101 1,,0 "" LSB' - 0 1 2 3 .. 5 8 7 8 9 A I C D E F
0000 a TEST- SBA BRA TSX NEG SUB I 0
0001 1 NOP CRA BRN INS " .. , '., .. ::. ~.: . ': ,." :' L ~;·.·

CMP 1
0010 2 10lV BRSH BHI PUU :;;'i::l::..?~~~~!·~;~r.~;; :' (~ .!:.'::. SBC 2
DOlt J FDN BRCUI BlS PUlS COM SUBO AOoO 3
0100 4 LSRO BSET Bce OES lSR AND 4
Dl0t 5 ASlO BCllI BCS TXS .. :;~1;~~··.~· ~~:i}::~~'::. ;-t:~.'.~;!7: I'~. BIT 5
Ollo 6 TAP TAB BNE PSHA ROR lOA 6
all t 7 TPA TBA BED PSHB ASR . - STA ::~:;:.::!'1 STA 7
1000 B INX PAGE2 Bve PUlX ASl EOR 8
1001 9 DEX OAA BVS RTS RUl ADC 9
1010 A elV PAGE3 I BPL ABX DEC ORA A
1011 B SEV ABA BMI RTI , .' , . . .,:;- ADO B
1100 C ClC BSH BGE PSHX I INC CPX lDO e

1101 0 SEC BClll BlT MUl TST BSR JSR PAGE4 STO D
IltO E ell SRSH BGT WAI .--:: '.-:-:'~ ~'':,~t.A':':i JMP lOS lOX E

1 It 1 F SEI SRClR SLE SWI CLR XGOX . STS STOP STX F

0 1 2 J 4 5 B 7 8 9 A B C 0 E F

* lNO,X
Test instruction executable only In test mode.

Figure 3-1. Opcode Map Page 1

ACCA ACCS
INH INH IND.Y IMM DIR IND.Y EXT IMM DIR IND.Y EXT

0000 0001 0010 0011 0100 010' 0'10 0111 1000 1001

0 2 .. 5 6 7 8 9

DODD . ..:. " :::j .:~ ,:::· ·~ ;, t"' ''\t.~-:~~:~·:···,l TSY ~~.~~ ':i. ::~ . :~~ ... : NEG "

.. :. :1'
' " SUB ~~~~-

DIDO

010t

0110

0111

1000

lOOt

'1010

1011

1100 ~::·~it :.r..

1101 '7i.'-$f'::
1110 .~~

1111 "'~ .. ~~1-'

MOTOROLA
3-8

BSH

BCLR

BRSET

SRelR

.,:~(j~ PSHY :~:~;;':~:"~0: INC

:~¥:~~~~~~·~~'!~2;t:~?i TST

.~)~~~~:~.:~ JMP LOS

:~.;.:~~":.r:~i~~·~~;Jt.;J:(\r'~~·:a:~·: . CLR ;. ... , :~ - XGOY I ' : .:' STS

IHO,Y

Figure 3-2. Opcode Map Page 2 (18xx)

CMP -~"'t·~
SSC -t$..~

AOOO .~)

ANO .,*>"~ 4

BIT ~~~
LOA f.~
ST4 'it~~
EOR ~~1.~
ADC ~~
ORA ;~,)?~i:; A

ADO '~;).@
LOO ~'~
STO ~~~

STY

M 68 H C 11 PM I' A 0

I r I I
~ ~I 0000 i 0001 : 0010 I 0011 : 0100 0101

LSB ~ 0 I 1 I 2 I 3 I 4 5

0000 a
0001 I

0010 2

0011

0100 4

0101

0110

0111

1000

IDOl

1010

1011

1100

1101 o ' .!.' .-.:

1110

1111

a I 1 I 2 I J I 4

0110

8

I ACCA T AceB =.=J
I IMM : DIR i INO .X ! EXT I I INO'X~

0111 1,000 1 1001 1 ,010 i 1011 ! 11001,10, 1 ",0 i "11

71al91ATBIcio E F

I CPO I

I Cpy 1

LOY

STY

Figure 3-3. Opcode Map Page 3 (1Axx)

~ MSB 0000 0001 0010 001'

LSBt~ 0 2 3

0000

0001

0010

aOll

0100

0101

0110

0111 ':: ., ' ,'. ,

1000 ,_ ,;: ;, .,,:0 '

1001

1010

1011

1100

1101

1110

1111

0100 0101

4 5

0110 0111

8

5 I 8 7 I

ACCA

1000 1001

9

IND.Y

1010 lOll

A B

CPO

CPX

Figure 3-4. Opcode Map Page 4 (CDxx)

M68HC11 PM I AD

ACCS

1100 1101

C 0

IND.X

1110 1111

E

LOX

STX

'" a

M070ROLA
3-9

